
Introduction Page 1

Dynamic Programming
for Interviews

Using the FAST Method to Easily Solve Dynamic
Programming Coding Interview Questions

www.byte-by-byte.com
Sam Gavis-Hughson of Byte By Byte LLC

http://www.byte-by-byte.com/dpbook-facebook
http://www.byte-by-byte.com/dpbook-linkedin
http://www.byte-by-byte.com/dpbook-twitter
http://www.byte-by-byte.com

Dynamic Programming
for Interviews

Using the FAST method to easily solve dynamic
programming coding interview questions

By Sam Gavis-Hughson
Creator of www.byte-by-byte.com

© 2017 Byte by Byte LLC
All rights reserved

http://www.byte-by-byte.com

Dedication
This book is dedicated to my ever-supportive parents. I literally wouldn’t be here without you guys.

A quick note on sharing

Thank you so much for downloading this ebook. I’ve put many hours and hundreds of dollars into putting together the best
free resource that is available on dynamic programming.

I’d love for you to share this book with anyone who you think might enjoy it! In return, I ask that you only share the
book through the official link (www.dynamicprogrammingbook.com) or by using one of the social media links at the bottom

of each page. Please DO NOT share the PDF file directly.

http://www.byte-by-byte.com/dpbook-facebook
http://www.byte-by-byte.com/dpbook-linkedin
http://www.byte-by-byte.com/dpbook-twitter
http://www.dynamicprogrammingbook.com

Contents

Dedication ..3
Introduction ...5
Prereqs ...6
Dynamic Programming Overview ...7
Dynamic Programming Practice ...9
Fibonacci Numbers ..12
Making Change ...17
Square Submatrix...23
0-1 Knapsack ..29
Target Sum ..35
Closing thoughts ..40
Disclaimer ..42

(clickable)

http://www.byte-by-byte.com/dpbook-facebook
http://www.byte-by-byte.com/dpbook-linkedin
http://www.byte-by-byte.com/dpbook-twitter

Introduction Page 5

When I ask people what they struggle with the most when
preparing for interviews, I always hear the same answer:
Dynamic programming.

This answer doesn’t surprise me at all. Dynamic programming
is somewhat unintuitive. There’s an aura around it as something
to be feared.

However, there is no logical reason why it should be this way.
Dynamic programming can actually be easy and fun if you take
the time to learn how to properly approach these problems.

This book attempts to capture the two most important concepts
for dynamic programming interview problems:

1. Have a system to solve every problem

2. All dynamic programming problems are very similar

In order for you to understand how to approach any dynamic
programming problem, this book introduces you to the FAST
method. This four step process makes it very easy for you to
clearly and consistently think about dynamic programming.
This information will be reinforced through a review of five
different sample problems that commonly occur in interviews.

Fully understanding the FAST method and how to apply it in
our examples will prepare you for any dynamic programming
problems that you might face in an interview situation. My hope
is that when you reach the end of this book, you will no longer
fear dynamic programming and will realize that it can actually
be fun.

Introduction

http://www.byte-by-byte.com/dpbook-facebook
http://www.byte-by-byte.com/dpbook-linkedin
http://www.byte-by-byte.com/dpbook-twitter

Introduction Page 6

Prereqs
●	
●	

Programming fundamentals
This book assumes a solid level of coding ability. I have attempted to make the intentions clear in the code.

It is likely difficult to follow if you don’t have a good foundation.

Recursion
Recursion is the key to understanding dynamic programming. Dynamic programming involves breaking problems down into

smaller subproblems. The first step of the FAST method requires you to find a recursive solution to the problem and I will provide
minimal guidance on this point. If you struggle with recursion, I recommend that you work on it before attempting to do dynamic

programming.

http://www.byte-by-byte.com/dpbook-facebook
http://www.byte-by-byte.com/dpbook-linkedin
http://www.byte-by-byte.com/dpbook-twitter

Introduction Page 7

Dynamic
Programming
Overview

What is Dynamic Programming?
It is important to have a good understanding of dynamic
programming before we go any further. Generally speaking,
dynamic programming is the technique of storing repeated
computations in memory, rather than recomputing them every
time you need them. The ultimate goal of this process is to
improve runtime. Dynamic programming allows you to use
more space to take less time.

The following two characteristics are required of all problems
that can be optimized using dynamic programming: Optimal
substructure and overlapping subproblems.

Optimal Substructure
Optimal substructure requires that you can solve a problem
based on the solutions of subproblems. For example, if you
want to calculate the 5th Fibonacci number, it can be solved by
computing fib(5) = fib(4) + fib(3). It is not necessary to
know any more information other than the solutions of those
two subproblems, in order to get the solution.

A useful way to think about optimal substructure is whether a
problem can be easily solved recursively. Recursive solutions
inherently solve a problem by breaking it down into smaller
subproblems. If you can solve a problem recursively, it most
likely has an optimal substructure.

http://www.byte-by-byte.com/dpbook-facebook
http://www.byte-by-byte.com/dpbook-linkedin
http://www.byte-by-byte.com/dpbook-twitter

Introduction Page 8

Overlapping Subproblems
Overlapping subproblems means that when you split your
problem into subproblems, you sometimes get the same
subproblem multiple times. With the Fibonacci example, if
we want to compute fib(5), we need to compute fib(4) and
fib(3). However, to compute fib(4), we need to compute fib(3)
again. This is a wasted effort, since we’ve already computed the
value of fib(3).

Dynamic programming relies on overlapping subproblems,
because it uses memory to save the values that have already
been computed to avoid computing them again. The more
overlap there is, the more computational time is saved.

Key terms
There are several terms that are used frequently when discussing
dynamic programming, those will be presented here.

Memoization
Memoization (sounds like memorization) is the technique
of writing a function that remembers the results of previous
computations. This allows us to capitalize on overlapping
subproblems.

To use memoization, a function can use a data structure (like an
array or HashMap) to store the values it has previously computed
and then look them up when it gets called. With the Fibonacci
example, there could be an array where index i == -1, if we
haven’t computed the value or i == fibi, if we have computed
the value. Therefore, if we call fib(3) and array[3] != -1, we
can return array[3] rather than recomputing the value.

Top-down and bottom-up
Top-down and bottom-up refer to two general approaches to
dynamic programming. A top-down solution starts with the
final result and recursively breaks it down into subproblems.
The bottom-up method does the opposite. It takes an iterative
approach to solve the subproblems first and then works up to
the desired solution.

This book works through problems by first finding a top-
down solution and then converting it into a bottom-up
solution. Bottom-up solutions are not always better than top-
down solutions. The goal of the book is to demonstrate that
both solutions are equally valid and that one solution can be
determined from the other. In an interview situation, although
bottom-up solutions often result in more concise code, either
approach is appropriate. I recommend that you use whatever
solution makes the most sense to you.

The distinction between top-down and bottom-up solutions will
be discussed in detail in the upcoming examples. Therefore, if
it not yet clear to you, it is not necessary to be concerned. The
important point is that top-down = recursive and bottom-up =
iterative.

http://www.byte-by-byte.com/dpbook-facebook
http://www.byte-by-byte.com/dpbook-linkedin
http://www.byte-by-byte.com/dpbook-twitter

Introduction Page 9

Dynamic
Programming
Practice

As with many things, talk is cheap. Now that we’ve discussed
some of the higher-level ideas, let’s dig into the specifics.

The FAST method
The most successful interviewees are those who have developed
a repeatable strategy to succeed. This is especially true for
dynamic programming. This is the reason for the development
of the FAST method.

There are four steps in the FAST method:

1. First solution

2. Analyze the first solution

3. Identify the Subproblems

4. Turn the solution around

By following these four steps, it is easy to come up with an
optimal dynamic solution for almost any problem.

Find full code for all of the problems
in this book and other resources at
www.byte-by-byte.com/dpbook-resources.

http://www.byte-by-byte.com/dpbook-facebook
http://www.byte-by-byte.com/dpbook-linkedin
http://www.byte-by-byte.com/dpbook-twitter
http://www.byte-by-byte.com/dpbook-resources

Introduction Page 10

First solution
This is an important step for any interview question but is
particularly important for dynamic programming. This step
finds the first possible solution. This solution will be brute force
and recursive. The goal is to solve the problem without concern
for efficiency. It means that if you need to find the biggest/
smallest/longest/shortest something, you should write code
that goes through every possibility and then compares them all
to find the best one.

Your solution must also meet these restrictions:

• The recursive calls must be self-contained. That means
no global variables.

• You cannot do tail recursion. Your solution must compute
the results to each subproblem and then combine them
afterwards.

• Do not pass in unnecessary variables. Eg. If you can
count the depth of your recursion as you return, don’t
pass a count variable into your recursive function.

Once you’ve gone through a couple problems, you will likely see
how this solution looks almost the same every time.

Analyze the first solution
In this step, we will analyze the first solution that you came up
with. This involves determining the time and space complexity
of your first solution and asking whether there is obvious room
for improvement.

As part of the analytical process, we need to ask whether the
first solution fits our rules for problems with dynamic solutions:

• Does it have an optimal substructure? Since our solution’s
recursive, then there is a strong likelihood that it meets
this criteria. If we are recursively solving subproblems of
the same problem, then we know that our substructure
is optimal, otherwise our algorithm wouldn’t work.

• Are there overlapping subproblems? This can be more
difficult to determine because it doesn’t always present
itself with small examples. It may be necessary to try
a medium-sized test case. This will enable you to see
if you end up calling the same function with the same
input multiple times.

http://www.byte-by-byte.com/dpbook-facebook
http://www.byte-by-byte.com/dpbook-linkedin
http://www.byte-by-byte.com/dpbook-twitter

Introduction Page 11

Find the Subproblems
If our solution can be made dynamic, the exact subproblems to
memoize must be codified. This step requires us to discover the
high-level meaning of the subproblems. This will make it easier
to understand the solution later. Our recursive solution can be
made dynamic by caching the values. This top-down solution
facilitates a better understanding of the subproblems which is
useful for the next step.

Turn the solution around
We now have a top-down solution. This is fine and it would be
possible to stop here. However, sometimes it is better to flip
it around and to get a bottom up solution instead. Since we
understand our subproblems, we will do that. This involves
writing a completely different function (without modifying
the existing code). This will iteratively compute the results of
successive subproblems, until our desired result is reached.

The following sample problems use the FAST method to arrive
at the solutions. By going through the examples, it will help you
to understand how each of these steps is applied.

http://www.byte-by-byte.com/dpbook-facebook
http://www.byte-by-byte.com/dpbook-linkedin
http://www.byte-by-byte.com/dpbook-twitter

Fibonacci Numbers Page 12

Fibonacci
Numbers

Given an integer n, write a function that will return the nth
Fibonacci number.

eg.
fib(0) = 0
fib(1) = 1
fib(5) = 5
fib(10) = 55

First solution
The first step in our FAST method is to find the first possible
solution. With this type of problem, we can find a solution by
focusing on the definition of a Fibonacci number. If you’re not
sure, you can ask your interviewer. However, it is likely that you
remember the following from grade school:

fib(n) = fib(n - 1) + fib(n - 2)
fib(0) = 0
fib(1) = 1

Using these three expressions, it’s possible to calculate any
Fibonacci number.

When looking at these expressions, we can see that we’ve
defined a recursive function. There are two base cases: fib(0)
and fib(1). There is also the recursive call: fib(n) = fib(n -
1) + fib(n - 2). It is, therefore, possible to code up our first
solution (fig. 1).

// Compute the nth Fibonacci number
// We assume that n >= 0 and that int is
// sufficient to hold the result
public int fib(int n) {
 if (n == 0) return 0;
 if (n == 1) return 1;
 return fib(n-1) + fib(n-2);
}

Fig 1. Naive recursive Fibonacci solution

http://www.byte-by-byte.com/dpbook-facebook
http://www.byte-by-byte.com/dpbook-linkedin
http://www.byte-by-byte.com/dpbook-twitter

Fibonacci Numbers Page 13

Analyze the first solution
The first iteration of our code has a short and sweet solution.
It could even be reduced to two lines by combining the if
statements.

But how does our solution stack up time-wise? Let’s look at the
execution of fib(4) (fig. 2).

Our graph shows that this solution isn’t ideal. While fib(0) and
fib(1) are constant time operations, fib(2) is called multiple
times, each of which involves further recursive calls.

We can quickly compute the runtime, since we know that the
depth of the recursive call (the height of the tree) will be n. This
is because we recursively call our function with n-1 each time.
We also know that each recursive call results in two more calls,
until we reach the base case. We can, therefore, say that we are
making 1 + 2 + 4 + 8 + … + 2^n-1 function calls or 2^0 +
2^1 + … + 2^n-1 calls, which reduces to O(2^n).

This is a terrible runtime!

Since we’re using recursion, we can determine whether this
problem is a potential candidate for dynamic programming. By
looking at the solution, we can see that it has:

1. Optimal substructure. Our solution is recursive. Once
we’ve solved one of the subproblems (ie. fib(2)), we
can use these solutions to solve for greater values of n.

2. Overlapping subproblems. Since fib(2) gets called
multiple times, it would be much more efficient if we
were able to compute the solution to fib(2) only once.

Our problem has an optimal substructure and overlapping
subproblems. Therefore, we know that we can improve our
problem by using dynamic programming. We are now ready to
move to the next step of our FAST method.

// Compute the nth Fibonacci number
public int fib(int n) {
 if (n == 0) return 0;
 if (n == 1) return 1;
 return fib(n-1) + fib(n-2);
}

Fig 1. Repeated

fib(1)

fib(4)

fib(2)fib(3)

fib(1)

fib(0)

fib(0)fib(1)fib(2)

Fig 2. Execution tree for fib(4)

http://www.byte-by-byte.com/dpbook-facebook
http://www.byte-by-byte.com/dpbook-linkedin
http://www.byte-by-byte.com/dpbook-twitter

Fibonacci Numbers Page 14

Find the subproblems
In each recursive call, we break our problem into two
subproblems. We then combine those two partial results to get
our final result. In this case, for a function call of fib(n), our two
subproblems are fib(n-1) and fib(n-2).

fib(n-1) and fib(n-2) are the two subproblems whose results
we need in order to solve our problem. They are also the same
subproblems that are being called multiple times with the
same input. Therefore, we should cache the results of these
subproblems.

However, before caching the values, it is essential to be clear
on the meaning of the subproblems. In this case, it is simple -
the value of fib(n-1) is just the n-1th Fibonacci number. With
future problems, however, understanding the meaning of the
subproblem is more complicated, as well as more important.

Understanding the subproblems allows us to add a cache
to our original solution and to obtain a top-down dynamic
programming solution (figs. 3, 4).

Our runtime now scales linearly, rather than exponentially. For
fib(n), we compute the Fibonacci value for each value from 1
to n exactly once. This gives us a runtime of O(n). In terms of
the space complexity, we have to use O(n) space to store the
cache. However, since we are making a recursive call that goes
n deep and uses O(n) stack space already, it does not affect our
asymptotic space complexity.

// Compute the nth Fibonacci number recursively.
// Optimized by caching subproblem results
public int fib(int n) {
 if (n < 2) return n;
 // Create cache and initialize to -1
 int[] cache = new int[n+1];
 for (int i = 0; i < cache.length; i++) {
 cache[i] = -1;
 }
 // Fill initial values in cache
 cache[0] = 0;
 cache[1] = 1;
 return fib(n, cache);
}

// Overloaded private method
private int fib(int n, int[] cache) {
 // If value is set in cache, return
 if (cache[n] >= 0) return cache[n];
 // Compute and add to cache before returning
 cache[n] = fib(n-1, cache) + fib(n-2, cache);
 return cache[n];
}

Fig 3. Top-down dynamic Fibonacci solution

fib(1)

fib(4)

fib(2)fib(3)

fib(1)

fib(0)

fib(2)

Fig 4. Execution tree for fib(4). Cache hits
are bolded

http://www.byte-by-byte.com/dpbook-facebook
http://www.byte-by-byte.com/dpbook-linkedin
http://www.byte-by-byte.com/dpbook-twitter

Fibonacci Numbers Page 15

Turn the solution around
Since we now have a top-down solution, it is possible to reverse
the process and solve it from the bottom up. This can be done by
starting with the base cases and building up the solution from
there by computing the results of each subsequent subproblem,
until we reach our result.

In this problem, our base cases are fib(0) = 0 and fib(1) =
1. From these two values, we can compute the next largest
Fibonacci number, fib(2) = fib(0) + fib(1). Once we have the
value of fib(2), we can calculate fib(3) etc. As we successively
compute each Fibonacci number, the previous values are saved
and referred to as necessary, eventually reaching fib(n).

Our code for this process is fairly straightforward (fig 5).

This process yields a bottom-up solution. Since we iterate
through all of the numbers from 0 to n once, our time complexity
will be O(n) and our space will also be O(n), since we create a 1D
array from 0 to n. This makes our current solution comparable
to the top-down solution, although without recursion. This code
is likely easier to understand.

Because we understood the meaning of our subproblems and
how to combine them into subsequently larger solutions, it was
easy to write this code. A full understanding of the problem
means that converting from top-down to bottom-up doesn’t
have to be a difficult task.

// Compute the nth Fibonacci number iteratively
public int fib(int n) {
 if (n == 0) return 0;

 // Initialize cache
 int[] cache = new int[n+1];
 cache[1] = 1;

 // Fill cache iteratively
 for (int i = 2; i <= n; i++) {
 cache[i] = cache[i-1] + cache[i-2];
 }

 return cache[n];
}

Fig 5. Bottom-up dynamic Fibonacci solution

http://www.byte-by-byte.com/dpbook-facebook
http://www.byte-by-byte.com/dpbook-linkedin
http://www.byte-by-byte.com/dpbook-twitter

Fibonacci Numbers Page 16

Many problems would actually be solved by this point. However,
in this case it is possible to improve our solution further. During
the computation process, we only refer to the most recent two
subproblems (cache[i-1] and cache[i-2]) to compute the
value of the current subproblem. Therefore, cache[0] through
cache[i-3] are unnecessary and do not need to be kept in
memory.

We can, therefore, improve the space complexity of our solution
to O(1) by only caching the most recent two values.

While this additional optimization is not applicable to all
problems, it is useful to look for the opportunity to use it,
wherever possible.

Conclusion
This problem is a perfect introduction to dynamic programming.
It lends itself to recursion and has clear subproblems that make
it easy to cache for a dynamic solution. Although other problems
can be more complicated, the concepts in this problem easily
carry over.

// Compute the nth Fibonacci number iteratively
// with constant space. We only need to save
// the two most recently computed values
public int fib(int n) {
 if (n < 2) return n;
 int n1 = 1, n2 = 0;
 for (int i = 2; i < n; i++) {
 int n0 = n1 + n2;
 n2 = n1;
 n1 = n0;
 }

 return n1 + n2;
}

Fig 6. Optimized bottom-up dynamic Fibonacci
solution

http://www.byte-by-byte.com/dpbook-facebook
http://www.byte-by-byte.com/dpbook-linkedin
http://www.byte-by-byte.com/dpbook-twitter

Making Change Page 17

Making
Change

Given an integer representing a given amount of change, write a
function to compute the total number of coins required to make
that amount of change. You can assume that there is always a
1¢ coin.

eg. (assuming American coins: 1, 5, 10, and 25 cents)
makeChange(1) = 1 (1)
makeChange(6) = 2 (5 + 1)
makeChange(49) = 7 (25 + 10 + 10 + 1 + 1 + 1 + 1)

First solution
We will start by finding the first solution to this problem. For
any problem where you are asked to find the most/least/
largest/smallest etc, an excellent technique is to compare every
possible combination. Although it will be inefficient, efficiency is
not the most important current consideration and a solution of
that nature is easy to make dynamic.

We can easily write a recursive function to find every possible
combination of coins (fig. 7). At each recursive step, the solution
can be broken into subproblems. If a 25¢ coin is selected, how
many coins will be required to compose the remaining quantity?

// Brute force solution. Go through every
// combination of coins that sum up to c to
// find the minimum number
private int[] coins = new int[]{10, 6, 1};
public int makeChange(int c) {
 if (c == 0) return 0;
 int minCoins = Integer.MAX_VALUE;
 // Try removing each coin from the total and
 // see how many more coins are required
 for (int coin : coins) {
 // Skip a coin if it’s value is greater
 // than the amount remaining
 if (c - coin >= 0) {
 int currMinCoins = makeChange(c - coin);
 if (currMinCoins < minCoins)
 minCoins = currMinCoins;
 }
 }
 // Add back the coin removed recursively
 return minCoins + 1;
}

Fig 7. Naive Making Change solution

http://www.byte-by-byte.com/dpbook-facebook
http://www.byte-by-byte.com/dpbook-linkedin
http://www.byte-by-byte.com/dpbook-twitter

Making Change Page 18

A common, efficient solution to this problem is to use a
greedy algorithm. In this situation, you repeatedly select
the largest coin that isn’t larger than the remaining
amount of change (more info here). However, this
doesn’t work for arbitrary combinations of coins
(consider 1¢, 6¢, and 10¢ coins and using a greedy
algorithm to compute makeChange(12)). Therefore, we
will instead focus on a generalized solution.

Analyze the first solution
It is not surprising that the first iteration of our code is relatively
inefficient. Since we are looking at every possible combination
of coins to find the best one, we have to look at many different
combinations.

As we can see from the execution of makeChange(12) (fig. 8),
our tree will have a maximum height of c and branch n different
ways at each level, where n is the number of different coins.
This means that our big O time complexity will be O(c^n).

Since the runtime is very poor and our solution is recursive, let’s
consider whether we can use dynamic programming.

1. Optimal substructure. As we’ve seen, recursion is a
pretty good heuristic in this case. It is also possible to use
the commutative and associative properties of addition
to see that by finding the minimum number of coins for
subproblem, it can be combined into the larger problem.

2. Overlapping subproblems. This property is often easiest
to visualize by drawing a diagram and seeing if there is
overlap between the multiple branches of the tree. While
not shown in this diagram, we know that makeChange(11)
will be broken into makeChange(1), makeChange(5), and
makeChange(10). makeChange(1) and makeChange(5)
are called in other branches, so we know there’s overlap.

With those properties, we can continue using the FAST method
to find a dynamic programming solution for this problem.

// Brute force solution. Go through every
// combination of coins that sum up to c to
// find the minimum number
private int[] coins = new int[]{10, 6, 1};
public int makeChange(int c) {
 if (c == 0) return 0;
 int minCoins = Integer.MAX_VALUE;
 // Try removing each coin from the total and
 // see how many more coins are required
 for (int coin : coins) {
 // Skip a coin if it’s value is greater
 // than the amount remaining
 if (c - coin >= 0) {
 int currMinCoins = makeChange(c - coin);
 if (currMinCoins < minCoins)
 minCoins = currMinCoins;
 }
 }
 // Add back the coin removed recursively
 return minCoins + 1;
}

Fig 7. Repeated

http://www.byte-by-byte.com/dpbook-facebook
http://www.byte-by-byte.com/dpbook-linkedin
http://www.byte-by-byte.com/dpbook-twitter
http://www.comp.nus.edu.sg/~sanjay/cs3230/greed1.pdf

Making Change Page 19

change(12)

change(6)change(2)

change(1) change(0) change(5)

...

...

change(0)

change(11)

-10

-1

-1

-1
-1-6

-6-10

-1
-6

Fig 8. Tree of recursive calls for makeChange(12) with
coins={10, 6, 1}

Find the subproblems
Each function calls itself recursively once for each coin. These
recursive calls are the subproblems because they break down
our original input into smaller components and calculate those
respective values.

The meaning of these subproblems is relatively easy to
understand because it is identical to the meaning of the original
problem. makeChange(c) for any value of c simply returns the
minimum number of coins required to make c cents. Therefore,
in our solution, we know that makeChange(c - coin) is simply
the minimum number of coins to make c-coin cents.

Based on this understanding, we can turn our solution into a
top-down dynamic solution. We can cache the results as they
are computed. That means that we will cache the minimum
number of coins needed to make various smaller amounts of
change.

Like the Fibonacci problem, our code doesn’t actually have to
change very much. It’s only necessary to overload our function
with another that can initialize the cache. Then we update the
original function in order to check the cache before doing the
computation and saving the result to the cache afterwards
(fig. 9).

The execution tree on the next page shows that the changes
significantly improve the solution (fig. 10). We are only using
O(c) space, even with the recursive stack.

The time complexity is a bit more complicated, but it can be
estimated. There will be at most c calls that don’t hit the cache.
The number that do hit the cache is proportional to the number
of coins (the branching factor). Therefore, we can estimate our
complexity at O(c * n).

http://www.byte-by-byte.com/dpbook-facebook
http://www.byte-by-byte.com/dpbook-linkedin
http://www.byte-by-byte.com/dpbook-twitter

Making Change Page 20

// Top down dynamic solution. Cache the values
// as we compute them
private int[] coins = new int[]{10, 6, 1};

public int makeChange(int c) {
 // Initialize cache with values as -1
 int[] cache = new int[c + 1];
 for (int i = 1; i < c + 1; i++)
 cache[i] = -1;
 return makeChange(c, cache);
}

// Overloaded recursive function
private int makeChange(int c, int[] cache) {
 // Return the value if it’s in the cache
 if (cache[c] >= 0) return cache[c];

 int minCoins = Integer.MAX_VALUE;

 // Find the best coin
 for (int coin : coins) {
 if (c - coin >= 0) {
 int currMinCoins =
 makeChange(c - coin, cache);
 if (currMinCoins < minCoins)
 minCoins = currMinCoins;
 }
 }

 // Save the value into the cache
 cache[c] = minCoins + 1;
 return cache[c];
}

Fig 9. Top-down dynamic Making Change solution

change(12)

change(6)change(2)

change(1) change(0) change(5) change(1) change(5) ...

change(0)

change(11)

-10

-1

-1 -1

-1

-1

-1
-1-6

-6-10

-1
-6

change(2)

change(3)

change(2)

Fig 10. Tree of recursive calls for makeChange(12) with
coins={10, 6, 1}. Cache hits are bolded

http://www.byte-by-byte.com/dpbook-facebook
http://www.byte-by-byte.com/dpbook-linkedin
http://www.byte-by-byte.com/dpbook-twitter

Making Change Page 21

Turn the solution around
Once the top-down solution is completed, it’s possible to flip it
around. We do this by solving the same subproblems in reverse
order. Rather than starting with our result in mind, we start with
no change and work our way up until we reach the solution.

The next step is to determine the subproblems that must be
solved, in order to solve successive subproblems. If we want
to compute makeChange(c), then we will have n different
subproblems. If our coins are {10, 6, 1}, we need to have the
solutions for makeChange(c - 10), makeChange(c - 6), and
makeChange(c - 1).

Once makeChange() is solved for 0 through c - 1, it will be
easy to compute the value of makeChange(c). This is done by
using the first value, 0 as our base case. We can then compute
the remaining values from the previously computed values.

By looking at the code on the next page we can see that we are
using O(c) space and O(c * n) time. This is comparable to the
top-down solution.

Although it is otherwise comparable, this code is much simpler
than the top-down solution. It's much easier to read and test.
However, the understanding developed from working through
this problem makes it easier to understand what this code is
really doing.

// Bottom up dynamic programming solution.
// Iteratively compute number of coins for
// larger and larger amounts of change
public int makeChange(int c) {
 int[] cache = new int[c + 1];
 for (int i = 1; i <= c; i++) {
 int minCoins = Integer.MAX_VALUE;

 // Try removing each coin from the total
 // and see which requires the fewest
 // extra coins
 for (int coin : coins) {
 if (i - coin >= 0) {
 int currCoins = cache[i-coin] + 1;
 if (currCoins < minCoins) {
 minCoins = currCoins;
 }
 }
 }
 cache[i] = minCoins;
 }

 return cache[c];
}

Fig 11. Bottom-up dynamic Making Change
solution

http://www.byte-by-byte.com/dpbook-facebook
http://www.byte-by-byte.com/dpbook-linkedin
http://www.byte-by-byte.com/dpbook-twitter

Making Change Page 22

Conclusion
Although Making Change is slightly more complicated than
where we started with the Fibonacci problem, it is still an excellent
example of how to use dynamic programming.

Both of these problems have had very straightforward
subproblems. Their meaning is very clear and doesn’t require
much thought. However, in the remaining three problems, defining
the subproblems correctly will become much more important.

http://www.byte-by-byte.com/dpbook-facebook
http://www.byte-by-byte.com/dpbook-linkedin
http://www.byte-by-byte.com/dpbook-twitter

Square Submatrix Page 23

Square
Submatrix

Given a 2D boolean array, find the largest square subarray of
true values. The return value should be the side length of the
largest square subarray subarray.

eg.
arr =

squareSubmatrix(arr) = 2

First solution
This may be the hardest problem in this ebook to get started
with initially. It is easy to find a brute force solution that checks
every possible square subarray to see if it contains all true
values. However, that solution isn’t easily broken down into
subproblems. Therefore, in order to do this dynamically, we
need to explore this further.

Really, what we want to do is to iterate through our array in order
to find the biggest square subarray that contains each cell.
Since we do not want to keep looking at the same subarray, we
want to ask this question: What is the biggest square subarray
for which the current cell is the upper left-hand corner?

While it may seem to be okay to do this iteratively, reframing the
problem in this way allows us to think of it recursively in terms
of subproblems.

Consider the figure on the next page (fig. 12). If our current cell
is arr[0][0], we find that the cells arr[0][1], arr[1][0],
and arr[1][1] are each the upper left-hand corner of their own
respective 3x3 subarrays. With that knowledge, we can see our
current cell, arr[0][0], is the only cell missing in a subarray of
the next size larger.

We can generalize based on this realization. If a given cell is
true, then it is the upper lefthand corner of the minimum size
of the three subarrays to the bottom, right, and bottom-right. It
is, therefore, possible to implement this recursively. This can be
done by iterating through each cell and recursively finding the
size of the largest square subarrays to the bottom, right, and
bottom-right, and combine it to get our solution (fig. 13).

http://www.byte-by-byte.com/dpbook-facebook
http://www.byte-by-byte.com/dpbook-linkedin
http://www.byte-by-byte.com/dpbook-twitter

Square Submatrix Page 24

Fig 12. Considering arr[0][0] is true, what is the largest
submatrix we can make with the child submatrix?

// Brute force solution. From each cell
// find the biggest square submatrix for which
// it is the upper left-hand corner
public int squareSubmatrix(boolean[][] arr) {
 int max = 0;
 // Compute for each cell the biggest subarray
 for (int i = 0; i < arr.length; i++) {
 for (int j = 0; j < arr[0].length; j++) {
 if (arr[i][j]) max =
 Math.max(max,squareSubmatrix(arr,i,j));
 }
 }
 return max;
}

// Overloaded recursive function
private int squareSubmatrix(boolean[][] arr,
 int i, int j) {
 // Base case at bottom or right of the matrix
 if (i == arr.length || j == arr[0].length)
 return 0;
 // If the cell is false then it’s not part
 // of a valid submatrix
 if (!arr[i][j]) return 0;
 // Find the size of the right, bottom, and
 // bottom right submatrices and add 1 to the
 // minimum of those 3 to get the result
 return 1 + Math.min(Math.min(
 squareSubmatrix(arr, i+1, j),
 squareSubmatrix(arr, i, j+1)),
 squareSubmatrix(arr, i+1, j+1));
}

Fig 13. Naive Square Submatrix solution

http://www.byte-by-byte.com/dpbook-facebook
http://www.byte-by-byte.com/dpbook-linkedin
http://www.byte-by-byte.com/dpbook-twitter

Square Submatrix Page 25

This solution may seem to be complicated or that
you need to just see it. Although this is generally true,
the technique of using geometric properties occurs
frequently. It is possible to use it, if needed.

Analyze the first solution
By now, you’re probably getting used to the routine of how the
FAST method can be used. The current time solution is very
poor and it is helpful to understand how bad it is.

In order to evaluate the runtime of this code, we can examine
our recursion at a high level. With each turn, we make three
recursive calls. Therefore, we branch by 3 each time and get a
runtime of 3 * 3 * 3 * … or 3^x. In this case, x is the depth of
our recursion. Since in each turn, we either go down or left in our
matrix, we can find that the maximum depth of our recursion is
n + m for an n by m matrix. In this solution, we also have to do
our recursive call for each of the n * m cells. We, therefore, get
a runtime of O(n * m * 3 ^ (n + m)).

In terms of space complexity, our solution is simple because
the only space we use is the recursive stack. Therefore, we get
a space complexity of O(n + m).

Since that solution was so bad, let’s see if it can be improved
with dynamic programming.

1. Optimal substructure. Although our original solution
of just looking at every possibility didn’t match this
criteria, our new recursive solution does. By finding the
maximum size of three smaller subarrays, we can find
the maximum size of the larger subarray.

2. Overlapping subproblems. Without the recursive tree, it
is more difficult to see this. However, if we think about
how we execute our code, it is clear that we definitely
have overlapping subproblems. Since we have to iterate
over our array and continuously repeat our recursion, we
are guaranteed to recompute subproblems that we have
already computed.

We now know that we can definitely benefit from dynamic
programming.

http://www.byte-by-byte.com/dpbook-facebook
http://www.byte-by-byte.com/dpbook-linkedin
http://www.byte-by-byte.com/dpbook-twitter

Square Submatrix Page 26

Find the subproblems
Although we have already discussed this, we need to explicitly
define our subproblems. Based on our definition of our recursion,
we know that for any values of i and j, the function returns the
largest square subarray of all true values with arr[i][j] as
the upper left-hand corner. This is arbitrarily true for any values
of i and j.

A closer look at the recursive function indicates that the function
is being called recursively with different values of i and j and
the same value of arr. Therefore, we know that our result is
dependent on the values of i and j, but not arr, since arr stays
the same for the duration of any given execution.

With this knowledge of the subproblems, we can cache our
results and to look them up by i and j. To do this, it makes
sense for us to use a 2D array as our cache. We can again easily
modify our old solution by simply checking the cache before
performing a computation and putting any computed values
into the cache at the end (fig. 14).

Adding a cache allows us to significantly improve our time
complexity. Now we only need to recursively compute each
value once. Therefore, we visit each cell a constant number of
times. We now get a time complexity of O(n * m) and a space
complexity of O(n * m), because we have to store the cache.

http://www.byte-by-byte.com/dpbook-facebook
http://www.byte-by-byte.com/dpbook-linkedin
http://www.byte-by-byte.com/dpbook-twitter

Square Submatrix Page 27

// Top down dynamic programming solution. Cache
// the values to avoid repeating computations
public int squareSubmatrix(boolean[][] arr) {
 // Initialize cache. Don't need to initialize
 // to -1 because the only cells that will be
 // 0 are ones that are false and we want to
 // skip those ones anyway
 int[][] cache =
 new int[arr.length][arr[0].length];
 int max = 0;
 for (int i = 0; i < arr.length; i++) {
 for (int j = 0; j < arr[0].length; j++) {
 if (arr[i][j]) max = Math.max(max,
 squareSubmatrix(arr, i, j, cache));
 }
 }
 return max;
}
// Overloaded recursive function
private int squareSubmatrix(boolean[][] arr,
 int i, int j, int[][] cache) {
 if (i == arr.length || j == arr[0].length)
 return 0;
 if (!arr[i][j]) return 0;

 // If the value is set in the cache return
 // it. Otherwise compute and save to cache
 if (cache[i][j] > 0) return cache[i][j];
 cache[i][j] = 1 + Math.min(Math.min(
 squareSubmatrix(arr, i+1, j, cache),
 squareSubmatrix(arr, i, j+1, cache)),
 squareSubmatrix(arr, i+1, j+1, cache));
 return cache[i][j];
}
Fig 14. Top-down dynamic Square Submatrix
solution

Turn the solution around
Since the top-down solution is now complete, we can flip the
solution on it’s head. Remember that our subproblems were the
largest square submatrix with the upper left-hand corner at a
given location (i, j). This can be solved easily by starting with
the smallest subproblems.

However, it is first necessary to slightly modify our subproblems.
This is likely to happen whenever we recurse through an array/
matrix. Since recursion recurses to the end before working
its way up, it traverses the array backwards. It starts solving
subproblems with the bottom right-hand corner of the array.

Although it is fine for recursion, it makes iteration confusing.
Therefore, we can reverse the subproblem so that rather than
being the upper left-hand corner of a subarray, each subproblem
taking (i, j) represents the bottom right-hand corner of the
largest subarray.

This makes it easy to build up our solution (fig. 15). We can start
with i=0, j=0 and simply solve each successive subproblem,
until we get to i=n, j=m. We then have a cache that is full of the
max sizes of different bottom left-hand corners. This allows us
to iterate over and pick the largest. It is also possible to keep
track of the maximum as we go, to avoid having to iterate over
the whole thing again.

All we have to do now is iterate over the entire matrix once and do
a constant-time operation for each cell. This gives us a runtime
complexity of O(n * m). We also get a space complexity of O(n
* m), because we have to store the results in an nxm matrix.

http://www.byte-by-byte.com/dpbook-facebook
http://www.byte-by-byte.com/dpbook-linkedin
http://www.byte-by-byte.com/dpbook-twitter

Square Submatrix Page 28

// Bottom up solution. Start from the
// upper left corner and compute each larger
// submatrix
public int squareSubmatrix(boolean[][] arr) {
 int max = 0;
 // Initialize cache
 int[][] cache =
 new int[arr.length][arr[0].length];
 // Iterate over matrix to compute each value
 for (int i = 0; i < cache.length; i++) {
 for (int j = 0; j < cache[0].length; j++) {
 // If we’re in the first row/column then
 // the value is just 1 if that cell is
 // true and 0 otherwise. In other rows and
 // columns need to look up and to the left
 if (i == 0 || j == 0) {
 cache[i][j] = arr[i][j] ? 1 : 0;
 } else if (arr[i][j]) {
 cache[i][j] =
 Math.min(Math.min(cache[i][j-1],
 cache[i-1][j]),
 cache[i-1][j-1]) + 1;
 }
 if (cache[i][j] > max) max = cache[i][j];
 }
 }
 return max;
}

Fig 15. Bottom-up dynamic Square Submatrix
solution

Conclusion
This problem is difficult because it can be challenging to
break it into subproblems. However, with some creativity, it is
straightforward after you codify it into a recursive function.
This is also the first problem where the output is dependent on
multiple inputs (i and j). We will see that come up again in the
next two problems.

http://www.byte-by-byte.com/dpbook-facebook
http://www.byte-by-byte.com/dpbook-linkedin
http://www.byte-by-byte.com/dpbook-twitter

0-1 Knapsack Page 29

0-1 Knapsack

Imagine that you have a knapsack which can carry a certain
maximum amount of weight and you have a set of items with
their own weight and a monetary value. You are going to to sell
your items in the market but you can only carry what fits in the
knapsack. How do you maximize the amount of money that you
can earn?

Or more formally…

Given a list of items with values and weights, as well as a max
weight, find the maximum value you can generate from items,
where the sum of the weights is less than or equal to the max.
eg.
items = {(w:2, v:6), (w:2, v:10), (w:3, v:12)}
max weight = 5
knapsack(items, max weight) = 22

First solution
The first step is to try to find a brute force solution to this
problem. One way of solving this type of problem where you’re
trying to find the most of something, is to find every possible
combination of items to find the one with the maximum value
and is under the max weight.

This can be done with a straightforward recursive function. We
will be slightly clever and instead of looking at every possible
combination, we limit our focus to combinations that are less
than the maximum weight.

This can be done by recursively iterating over all the items. If
the item isn’t too heavy to fill the remaining space in the bag,
we recursively compute the max value of both, including and
not including the current item. If it is too heavy, our only option
is to not include it and to continue on to the next item (fig. 16).

http://www.byte-by-byte.com/dpbook-facebook
http://www.byte-by-byte.com/dpbook-linkedin
http://www.byte-by-byte.com/dpbook-twitter

0-1 Knapsack Page 30

public class Item {
 int weight;
 int value;
}
// Naive brute force solution. Recursively
// include or exclude each item to try every
// possible combination
public int knapsack(Item[] items, int W) {
 return knapsack(items, W, 0);
}
// Overloaded recursive function
private int knapsack(Item[] items, int W, int
i)
 {
 // If we've gone through all the items,
 // return
 if (i == items.length) return 0;
 // If the item is too big to fill the
 // remaining space, skip it
 if (W - items[i].weight < 0)
 return knapsack(items, W, i+1);

 // Find the maximum of including and not
 // including the current item
 return Math.max(
 knapsack(items, W - items[i].weight, i+1)
 + items[i].value,
 knapsack(items, W, i+1));
}

Fig 16. Naive 0-1 Knapsack solution

knapsack(5, 0)

knapsack(4, 1) knapsack(5, 1)

knapsack(2, 2)

knapsack(1, 3) knapsack(2, 3)knapsack(0, 3)knapsack(4, 3)

knapsack(4, 2) knapsack(5, 2)knapsack(3, 2)

knapsack(4, 3) knapsack(5, 3)knapsack(3, 3)

include

include include

include include includeexclude exclude exclude

exclude exclude

exclude

exclude

Fig 17. Tree of recursive calls for knapsack(W, i) where W =
5, i = 0 and items={(w:2, v:6), (w:2, v:10), (w:3,
v:12)}

Analyze the first solution
Our code looks at every possible combination, which is not very
efficient. The question that must be asked is: how bad is it?

Each item can be included it or not included. This causes the
recursion to branch in two different ways. Like several other
problems that have been discussed, we get 2 * 2 * … *
2 or 2^n, where n is the depth of our recursion. In this case,
our recursion iterates over the items array. Therefore, n is the
number of items, which gives us a time complexity of O(2^n).

The code performs reasonably well in terms of space complexity.
The only extra space that we are using is the recursive stack,
which is at most, height O(n).

http://www.byte-by-byte.com/dpbook-facebook
http://www.byte-by-byte.com/dpbook-linkedin
http://www.byte-by-byte.com/dpbook-twitter

0-1 Knapsack Page 31

Since there is recursion, this problem is a likely candidate to be
improved by dynamic programming.

1. Optimal substructure. From our recursive solution, we
know that this problem can be solved by combining the
results of subproblems.

2. Overlapping subproblems. The diagram (fig. 17) shows
that there is at least one overlapping subproblem. With
these types of examples, it is sometimes not obvious
how many subproblems actually overlap. However, if
even one subproblem overlaps, we know that there will be
more with bigger inputs and deeper levels of recursion.

Since there is an optimal substructure and overlapping
subproblems, our solution will be made dynamic.

Find the subproblems
This is a problem where the subproblems are not so
straightforward. We need to look at the recursion in order to
understand the real meaning of the recursive calls.

Our function includes a list of items, a weight and an index. We
are always passing the same list of items and not modifying it
in any way. Therefore, we know that for a given execution of this
code, the solutions to our subproblems are dependent solely
on the weight and index. Therefore, this discussion focuses on
those two variables.

With each recursive call, we either subtract our current item’s
weight from the total weight or ignore it. Therefore, the weight
that we’re passing into our subproblem is the remaining
available weight for additional items. The index increases with
each call. Therefore, we know that any recursive call will only
include the items from that index to the end of the list.

Therefore, our recursive call is asking this question: What is
the maximum value of the items from i to items.length that
weigh less than the given weight? It means that the initial call
of knapsack(items, W, 0) is exactly the same, but includes
all of the items.

Our understanding of the subproblems enables us to make our
original solution dynamic (fig. 18). This is done by caching the
values as we have done before. However, since it is possible
that there will be considerable empty space in our cache, we
can implement it using a HashMap of HashMaps (works the
same as a 2D array, which is an array of arrays).

Looking at the code on a high level, the space complexity is O(n
* W), where n is the number of items. This is because our worst
case is that we will need to store the subproblem for every
weight < W and every item index. In terms of time complexity,
we only have to compute our value once for any combination of
i and W. This gives us a similar time complexity of O(n * W).

http://www.byte-by-byte.com/dpbook-facebook
http://www.byte-by-byte.com/dpbook-linkedin
http://www.byte-by-byte.com/dpbook-twitter

0-1 Knapsack Page 32

// Top down dynamic programming solution.
// Cache values in a HashMap - the cache may
// be sparse
public int knapsack(Item[] items, int W) {
 // Map: i -> W -> value
 Map<Integer, Map<Integer, Integer>> cache =
 new HashMap<Integer,
 Map<Integer, Integer>>();
 return knapsack(items, W, 0, cache);
}

// Overloaded recursive function
private int knapsack(Item[] items, int W, int
i, Map<Integer, Map<Integer, Integer>> cache)
{
 if (i == items.length) return 0;
 // Check if the value is in the cache
 if (!cache.containsKey(i))
 cache.put(i,new HashMap<Integer,Integer>());
 Integer cached = cache.get(i).get(W);
 if (cached != null) return cached;
 // Compute the item and add it to the cache
 int toReturn;
 if (W - items[i].weight < 0) {
 toReturn = knapsack(items, W, i+1, cache);
 } else {
 toReturn =
 Math.max(knapsack(items,
 W - items[i].weight,
 i+1, cache)
 + items[i].value,
 knapsack(items, W, i+1, cache));
 }
 cache.get(i).put(W, toReturn);
 return toReturn;
}
Fig 18. Top-down dynamic 0-1 Knapsack solution

knapsack(5, 0)

knapsack(4, 1) knapsack(5, 1)

knapsack(2, 2)

knapsack(1, 3) knapsack(2, 3)knapsack(4, 3)

knapsack(4, 2) knapsack(5, 2)knapsack(3, 2)

knapsack(4, 3) knapsack(5, 3)

include

include include

include includeexclude exclude

exclude exclude

exclude

exclude

Fig 19. Tree of recursive calls for knapsack(W, i) where W =
5, i = 0 and items={(w:2, v:6), (w:2, v:10), (w:3,
v:12)}. Cache hits are bolded

Turn around the solution
Since we took the time to fully understand the meaning of the
subproblems, it’s straightforward to flip our solution.

Similar to the Square Submatrix problem, our recursive solution
iterates from the end of the array to the front. Therefore, we can
start by flipping our subproblem to make it easier to deal with.
We simply say that rather than knapsack(items, W, i) being
the max value of the items including and after i, it will be the
max value of the items up to, but not including i (or the first i
items).

http://www.byte-by-byte.com/dpbook-facebook
http://www.byte-by-byte.com/dpbook-linkedin
http://www.byte-by-byte.com/dpbook-twitter

0-1 Knapsack Page 33

It is now easy to reason through how to solve our problem
iteratively (fig. 20). For any pair where i or W is 0, we get a max
value of 0, because if i == 0 there are no items included. If W
== 0, then no items may be included, because they will overflow
the capacity.

When i and W do not equal 0, we can determine our solution
by looking at the previously computed subproblems. i tells
us which item to consider and W tells us the remaining weight
that we have available to us. For each cell, we need to decide
whether we get a greater value at that weight by including or
excluding item i - 1.

We can get the value of not including the item by looking at the
solution for W = W and i = i - 1, since the value is the same
as it was before. We can get the value of including the item by
looking at the max value we could get for W = W - item.
weight. This tells us the maximum value for the first i items,
while still leaving sufficient empty space to include the current
item.

This solution will be O(n * W) for both space and time
complexity, which is identical in space and time complexity to
our previous solution. We create an nxW array and iterate over
the entire array.

// Iterative bottom up solution.
public int knapsack(Item[] items, int W) {
 // Initialize cache
 int[][] cache =
 new int[items.length + 1][W + 1];
 // For each item and weight, compute the max
 // value of the items up to that item that
 // doesn't go over W weight
 for (int i = 1; i <= items.length; i++) {
 for (int j = 0; j <= W; j++) {
 if (items[i-1].weight > j) {
 cache[i][j] = cache[i-1][j];
 } else {
 cache[i][j] = Math.max(cache[i-1][j],
 cache[i-1][j-items[i-1].weight] +
 items[i-1].value);
 }
 }
 }

 return cache[items.length][W];
}

Fig 20. Bottom-up dynamic 0-1 Knapsack solution

http://www.byte-by-byte.com/dpbook-facebook
http://www.byte-by-byte.com/dpbook-linkedin
http://www.byte-by-byte.com/dpbook-twitter

0-1 Knapsack Page 34

This problem can also be optimized in terms of space in the
same way as with the Fibonacci problem. A close examination
of our solution indicates that cache values are only looked up
where i = i - 1. Therefore, we can reduce our solution to only
using a 1D array (fig. 21).

This optimization does have limitations. With the original
bottom-up solution, we were able to go through the array and
figure out which items are included in the optimal knapsack.
When we compress it into a single array, we are no longer able to
do that. However, if you’re just trying to solve for the maximum
value, it isn’t necessary to know the specific items.

Conclusion
The 0-1 Knapsack problem is the quintessential example of a
dynamic programming problem. A good understanding of how
this problem works and how to formulate the subproblems
makes the rest of dynamic programming relatively easy to
understand.

Many dynamic programming problems are only variations of
the 0-1 Knapsack problem. As you go through the next problem,
pay attention to the similarities and if you can reframe the
problem in terms of the 0-1 Knapsack problem.

// Optimized bottom up solution with 1D cache.
// Same as before but only save the cache of
// i-1 and not all values of i.
public int knapsack(Item[] items, int W) {
 int[] cache = new int[W + 1];
 for (Item i : items) {
 int[] newCache = new int[W + 1];
 for (int j = 0; j <= W; j++) {
 if (i.weight > j) newCache[j] = cache[j];
 else newCache[j] = Math.max(cache[j],
 cache[j - i.weight] +
 i.value);
 }
 cache = newCache;
 }

 return cache[W];
}

Fig 21. Optimized bottom-up dynamic 0-1
Knapsack solution

http://www.byte-by-byte.com/dpbook-facebook
http://www.byte-by-byte.com/dpbook-linkedin
http://www.byte-by-byte.com/dpbook-twitter

Target Sum Page 35

Target Sum

Given an array of integers, nums and a target value T, find the
number of ways that you can add and subtract the values in
nums to add up to T.

eg.
nums = {1, 1, 1, 1, 1}
T = 3

1 + 1 + 1 + 1 - 1
1 + 1 + 1 - 1 + 1
1 + 1 - 1 + 1 + 1
1 - 1 + 1 + 1 + 1
-1 + 1 + 1 + 1 + 1

targetSum(nums, T) = 5

First solution
To start our solution to this problem, we can consider all of the
possible combinations of adding and subtracting items and
then count the number of those combinations that add up to
our target.

This can be done recursively by iterating through the array and
recursively adding and subtracting each value from the total.
Once we reach the end of the array, we check if the total is equal
to the target sum. If it is equal to the target sum, then we have
found one valid combination of adding and subtracting (fig. 22).

// Naive brute force solution. Find every
// combo
public int targetSum(int[] nums, int T) {
 return targetSum(nums, T, 0, 0);
}

// Overloaded recursive function
private int targetSum(int[] nums, int T, int
i,
 int sum) {
 // When we've gone through every item, see
 // if we've reached our target sum
 if (i == nums.length) {
 return sum == T ? 1 : 0;
 }

 // Combine the possibilites by adding and
 // subtracting the current value
 return targetSum(nums, T, i+1, sum + nums[i])
 + targetSum(nums, T, i+1, sum - nums[i]);
}
Fig 22. Naive Target Sum solution

http://www.byte-by-byte.com/dpbook-facebook
http://www.byte-by-byte.com/dpbook-linkedin
http://www.byte-by-byte.com/dpbook-twitter

Target Sum Page 36

Analyze the first solution
Similar to what we saw in several of the previous problems,
our brute force solution is not very efficient. The recursive tree
branches by 2 each time, which yields a runtime of 2 * 2 * …
* 2 or O(2^n), where n is the number of numbers. Our space
complexity is the depth of the recursion. In this case, it is the
length of our input, or O(n).

Based on all the problems we’ve seen so far, this looks like a
good candidate for dynamic programming. However, before
making a decision, we need to look at the properties.

1. Optimal substructure. This problem, like the others, is
solved recursively. This means that we’re breaking it It is
broken down into discrete subproblems with the results
combined to obtain the solution.

2. Overlapping subproblems. The example tree (fig. 23)
shows that there are multiple overlapping problems,
even for this relatively simple example.

Hopefully at this point you’re seeing the similarities
between this and the 0-1 Knapsack problem are
apparent. Adding or subtracting a number is similar
to including or excluding an item in the knapsack. In
this case, the total number of combinations is tracked
instead of the items in the knapsack. It would require a
minimal effort to modify the 0-1 Knapsack code to track,
for example, the number of different combinations that
are less than a certain weight.

// Naive brute force solution. Find every
// combo
public int targetSum(int[] nums, int T) {
 return targetSum(nums, T, 0, 0);
}

// Overloaded recursive function
private int targetSum(int[] nums, int T, int
i,
 int sum) {
 // When we’ve gone through every item, see
 // if we’ve reached our target sum
 if (i == nums.length) {
 return sum == T ? 1 : 0;
 }

 // Combine the possibilites by adding and
 // subtracting the current value
 return targetSum(nums, T, i+1, sum + nums[i])
 + targetSum(nums, T, i+1, sum - nums[i]);
}

Fig 22. Repeated

http://www.byte-by-byte.com/dpbook-facebook
http://www.byte-by-byte.com/dpbook-linkedin
http://www.byte-by-byte.com/dpbook-twitter

Target Sum Page 37

targetSum(0,0)

targetSum(1,2)targetSum(1,-1)

targetSum(3,1)targetSum(3,-1) targetSum(3,-1)targetSum(3,-3)

targetSum(2,2)targetSum(2,0) targetSum(2,0)targetSum(2,-2)

targetSum(3,3)targetSum(3,1) targetSum(3,1)targetSum(3,-1)

+1-1

-1

-1 -1 -1 -1+1 +1 +1 +1

-1+1 +1

Fig 23. Tree of recursive calls for targetSum(i, sum) where
nums = {1, 1, 1}

Find the subproblems
In this problem, the subproblems are a little bit more complex.
Values are passed into the recursion that don’t actually change
during the the problem execution. We can ignore nums and T,
since those values don’t actually change. We focus on only i
and sum.

We’re recursively calling targetSum(nums, T, i+1, sum +
nums[i]) and targetSum(nums, T, i+1, sum - nums[i]).
This provides the basis for determining what the subproblems
are. We know because we increment i every call that we are
only looking at the values >= i, and sum is a running sum of
numbers that we’ve added and subtracted from index 0 to i.

We can, therefore, define our subproblem as follows:
targetSum(nums, T, i, sum) is the number of possible
combinations of adding and subtracting the numbers at or after
index i, where the sum of those numbers plus the sum equals
T. It can also be stated as follows: The number of combinations
where the sum equals T - sum.

Once the subproblem has been codified, the next step is to
modify the original solution to cache these values (fig. 24).
Similar to a 0-1 Knapsack, a HashMap of HashMaps will be
used to ensure space efficiency.

In order to get the space complexity, we need to determine the
range of the sum. This is because we are caching solutions for
subproblems based on i and sum. An examination of our code
shows that the sum ranges from -sum(nums) (if every value is
subtracted) to +sum(nums) (if every value is added). This yields
a space complexity of O(i * sum(nums)). The time complexity
is exactly the same, since we only have to compute each value
once.

http://www.byte-by-byte.com/dpbook-facebook
http://www.byte-by-byte.com/dpbook-linkedin
http://www.byte-by-byte.com/dpbook-twitter

Target Sum Page 38

// Top down dynamic programming solution. Like
// 0-1 Knapsack, we use a HashMap to save
// space
public int targetSum(int[] nums, int T) {
 // Map: i -> sum -> value
 Map<Integer, Map<Integer, Integer>> cache =
 new HashMap<Integer,Map<Integer,Integer>>();
 return targetSum(nums, T, 0, 0, cache);
}

// Overloaded recursive function
private int targetSum(
 int[] nums, int T, int i, int sum,
 Map<Integer, Map<Integer, Integer>> cache)
{
 if (i == nums.length) {
 return sum == T ? 1 : 0;
 }

 // Check the cache and return if we get a
 // hit
 if (!cache.containsKey(i)) cache.put(i,
 new HashMap<Integer, Integer>());
 Integer cached = cache.get(i).get(sum);
 if (cached != null) return cached;

 // If we didn't hit in the cache, compute
 // the value and store to cache
 int toReturn =
 targetSum(nums,T,i+1,sum+nums[i],cache) +
 targetSum(nums,T,i+1,sum-nums[i],cache);
 cache.get(i).put(sum, toReturn);
 return toReturn;
}

Fig 24. Top-down dynamic Target Sum solution

targetSum(0,0)

targetSum(1,2)targetSum(1,-1)

targetSum(3,1)targetSum(3,-1)targetSum(3,-3)

targetSum(2,2)targetSum(2,0) targetSum(2,0)targetSum(2,-2)

targetSum(3,3)targetSum(3,1)targetSum(3,-1)

+1-1

-1

-1 -1 -1+1 +1 +1

-1+1 +1

Fig 25. Tree of recursive calls for targetSum(i, sum) where
nums = {1, 1, 1}. Cache hits are bolded

Turn around the solution
The subproblems will again be reversed so that we can iterate
through the array in forwards order. Our subproblems, therefore,
become: targetSum(nums, T, i, sum) is the number of
possible combinations of adding and subtracting the numbers
before index i (or the first i numbers).

Now we can build up the subproblems. We need to be careful
with how the subproblem solutions are stored. This is because
some of the values can be negative and our cache array can’t
have negative indices. Therefore, the sum dimension of the
cache will be size 2 * sum(nums) + 1. The values will offset
the values by sum. The 0 index actually represents -sum(nums).

We can avoid the need for excessive bounds checking with a
slight change in our approach. Instead of looking at the prior
solutions to the subproblems, we will look at the subproblems
that have already been solved and add those values to the next
iteration.

http://www.byte-by-byte.com/dpbook-facebook
http://www.byte-by-byte.com/dpbook-linkedin
http://www.byte-by-byte.com/dpbook-twitter

Target Sum Page 39

Assume that there is a solution for the subproblem where i =
3 and sum = 10. If the value at the next index is 4, we know that
we need to add our current value to the values at i = 4, sum =
10 +/- 4, or i = 4 and sum = 14 and i = 4 and sum = 6.
If this is done for all the values where i = 3, then we will have
solved for the entire column where i = 4.

Our solution (fig. 26) gives us the same time and space
complexity as the top-down solution. We are filling in a cache
of size i * sum(nums) and each step takes constant time.
Therefore, our time and space complexity are both O(i *
sum(n)).

public int targetSum(int[] nums, int T) {
 int sum = 0;
 // Our cache has to range from -sum(nums) to
 // sum(nums), so we offset everything by sum
 for (int num : nums) sum += num;
 int[][] cache =
 new int[nums.length + 1][2*sum + 1];
 if (sum == 0) return 0;
 // Initialize i=0, T=0
 cache[0][sum] = 1;
 // Iterate over previous row and update the
 // current row
 for (int i = 1; i <= nums.length; i++) {
 for (int j = 0; j < 2 * sum + 1; j++) {
 int prev = cache[i-1][j];
 if (prev != 0) {
 cache[i][j - nums[i-1]] += prev;
 cache[i][j + nums[i-1]] += prev;
 }
 }
 }
 return cache[nums.length][sum + T];
}
Fig 26. Bottom-up dynamic Target Sum solution

Conclusion
I hope you now have a better understanding of how to deal
with these types of problems. The increased complexity of
our problem requires a solution that can be trickier and more
susceptible to errors. If our values are not offset by sum(nums)
in the iterative solution, we will likely get an IndexOutOfBounds
exception.

This discussion clearly shows how this problem closely mirrors
the 0-1 Knapsack problem. This problem was intentionally
chosen to because it is similar enough to be easy to spot,
but different enough so that is possible to account for the
differences. A clear understand of how this works, makes all
dynamic programming much easier.

http://www.byte-by-byte.com/dpbook-facebook
http://www.byte-by-byte.com/dpbook-linkedin
http://www.byte-by-byte.com/dpbook-twitter

Conclusion Page 40

Your main take away from this book should be that dynamic
programming and coding interviews don’t have to be hard. We
worry about them excessively because we feel that there is so
much pressure on us.

It’s easy to feel like your life is over if you don’t get a job at
Google or Facebook. But that’s the same as saying that if we
don’t get into Harvard, it’s not worth going to college. It’s clearly
not true. However, many people hold themselves to ridiculously
high standards that cannot possibly be achieved.

These misconceptions can hinder us when we are practicing
for interviews. These feelings of inadequacy prevent us from
succeeding and are something that we must deal with and
change.

If interview prep is approached with structure and if we really
understand what we’re doing, we don’t have to kill ourselves
with excessive studying. We can follow a clear path forward to
reach our ultimate goal of getting a great job. We do not need
to be constantly worrying about whether we’ve memorized
enough practice questions.

It is my hope that this book showed you how to take a structured
approach which can make it easy to solve a wide array of
dynamic programming problems.

With the FAST method in your toolkit, dynamic programming
is one less thing you have to worry about. You can do this. You
don’t need to spend any more time here. You should turn your
attention elsewhere. Take this same focus to other areas of
your study and don’t stress out.

You’re going to do great!

Closing
thoughts

Conclusion Page 41

About the Author
Sam Gavis-Hughson is a former software engineer and
founder of www.byte-by-byte.com. He has worked at several
established tech companies, including HubSpot and Yext. His
primary focus with Byte by Byte is to help current students and
recent college graduates to find their dream jobs as software
engineers. Between Yext and Byte by Byte, Sam has conducted
over 50 interviews and mock interviews.

About Byte by Byte
Byte by Byte is a site targeting current students and recent
college graduates to help them find their dream jobs. Their
mission is to help people succeed at interviewing by focusing on
a structured approach to studying, as well as solving individual
interview problems. They believe that interview prep doesn’t
need to be scary or time consuming. Anyone can be successful.

To learn more about Sam and Byte by Byte, visit
www.byte-by-byte.com/about.

http://www.byte-by-byte.com
https://www.hubspot.com/
http://www.yext.com/
www.byte-by-byte.com
http://www.byte-by-byte.com/about

Disclaimer
This is a free eBook. You are free to give it away (in unmodified form) to whomever you wish. If you choose to do so, please use

the shareable link (www.dynamicprogrammingbook.com) or social links at the bottom of each page, rather than sharing the PDF
directly.

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying, recording or by any information storage and retrieval system, without written permission from the author.

The information provided within this eBook is for general informational purposes only. While we try to keep the information up-
to-date and correct, there are no representations or warranties, express or implied, about the completeness, accuracy, reliability,
suitability or availability with respect to the information, products, services, or related graphics contained in this eBook for any

purpose. Any use of this information is at your own risk.

The methods described within this eBook are the author’s personal thoughts. They are not intended to be a definitive set of
instructions for coding interview success. You may discover that there are other methods and materials to accomplish the same

end result.

The information contained within this eBook is strictly for educational purposes. If you wish to apply the ideas contained in this
eBook, you are taking full responsibility for your actions.

The author has made every effort to ensure that the accuracy of the information in this book was correct at the time of publication.
The author does not assume and hereby disclaims any liability to any party for any loss, damage, or disruption caused by errors or

omissions, whether such errors or omissions result from accident, negligence, or any other cause.

http://www.dynamicprogrammingbook.com

	_pd0u8yc9hi0v
	_9jcls1cih1it
	_j7qnggy1i2mf
	_33wahcdbn98v
	_8n92j02u57vn
	_mhn8rqw4gtnm
	_gpi6ugvihgsm
	_30xug4m6ea3g
	_5j323jr4b044
	_4fprdmuamtjb
	_2xt3eq4iozh3
	_ngy6tjrfeort
	_2drentavgbkl
	_fx3zs1wik50l
	_qcdr4mkim1xf
	_iszb79yrh4es
	_eca5svtg70zx
	
￼
Dedication
	Introduction
	

Prereqs
	Dynamic
Programming Overview
	Dynamic
Programming Practice
	

Fibonacci Numbers
	

Making Change
	

Square
Submatrix
	

0-1 Knapsack
	

Target Sum
	Closing thoughts
	

Disclaimer
	_i1d5luvh8e5e
	_t3ano1f1sqvc
	_axu9s9w1mk1q
	_w0442w63d1lt
	_7stz6lhwgjn4
	_by26v2o9swrs
	_eu7i41e1mk12
	_4dvhvq7v53yl
	_ur6waf4l24wk
	_xh9pcu568ts7
	_amywu5xsgudx
	_rwf126kl5585
	_p5aggjraz99i
	_8jzxww5fox6e
	_trf5dfwyegbl
	_rjbx58ywuhin
	_mq4ie53n9bxs
	_cltlutw1ngxb
	_n3216v57xdin
	_fvsrankb4k94
	_p1v01gbmi56j
	_5zwjbbjey3k5
	_5yohrv9wj0ch
	_bjw1kegjyigx
	_x2cjc1jgee8t
	_ojq6ydv1dmml
	_pfwj7pla3xje
	_vgnsgr2nnm1k
	_3bz75apfcy98
	_wyzp8tr6jj25

