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When I ask people what they struggle with the most when 
preparing for interviews, I always hear the same answer: 
Dynamic programming. 

This answer doesn’t surprise me at all. Dynamic programming 
is somewhat unintuitive. There’s an aura around it as something 
to be feared.

However, there is no logical reason why it should be this way. 
Dynamic programming can actually be easy and fun if you take 
the time to learn how to properly approach these problems.

This book attempts to capture the two most important concepts 
for dynamic programming interview problems:

1. Have a system to solve every problem

2. All dynamic programming problems are very similar

In order for you to understand how to approach any dynamic 
programming problem, this book introduces you to the FAST 
method. This four step process makes it very easy for you to 
clearly and consistently think about dynamic programming. 
This information will be reinforced through a review of five 
different sample problems that commonly occur in interviews.

Fully understanding the FAST method and how to apply it in 
our examples will prepare you for any dynamic programming 
problems that you might face in an interview situation. My hope 
is that when you reach the end of this book, you will no longer 
fear dynamic programming and will realize that it can actually 
be fun.

Introduction
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Prereqs
●	
●	

Programming fundamentals
This book assumes a solid level of coding ability. I have attempted to make the intentions clear in the code.  

It is likely difficult to follow if you don’t have a good foundation.

Recursion
Recursion is the key to understanding dynamic programming. Dynamic programming involves breaking problems down into 

smaller subproblems. The first step of the FAST method requires you to find a recursive solution to the problem and I will provide 
minimal guidance on this point. If you struggle with recursion, I recommend that you work on it before attempting to do dynamic 

programming.
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Dynamic  
Programming 
Overview

What is Dynamic Programming?
It is important to have a good understanding of dynamic 
programming before we go any further. Generally speaking, 
dynamic programming is the technique of storing repeated 
computations in memory, rather than recomputing them every 
time you need them. The ultimate goal of this process is to 
improve runtime. Dynamic programming allows you to use 
more space to take less time.
 
The following two characteristics are required of all problems 
that can be optimized using dynamic programming: Optimal 
substructure and overlapping subproblems.

Optimal Substructure
Optimal substructure requires that you can solve a problem 
based on the solutions of subproblems. For example, if you 
want to calculate the 5th Fibonacci number, it can be solved by 
computing fib(5) = fib(4) + fib(3). It is not necessary to 
know any more information other than the solutions of those 
two subproblems, in order to get the solution.

A useful way to think about optimal substructure is whether a 
problem can be easily solved recursively. Recursive solutions 
inherently solve a problem by breaking it down into smaller 
subproblems. If you can solve a problem recursively, it most 
likely has an optimal substructure.

http://www.byte-by-byte.com/dpbook-facebook
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Overlapping Subproblems
Overlapping subproblems means that when you split your 
problem into subproblems, you sometimes get the same 
subproblem multiple times. With the Fibonacci example, if 
we want to compute fib(5), we need to compute fib(4) and 
fib(3). However, to compute fib(4), we need to compute fib(3) 
again. This is a wasted effort, since we’ve already computed the 
value of fib(3).

Dynamic programming relies on overlapping subproblems, 
because it uses memory to save the values that have already 
been computed to avoid computing them again. The more 
overlap there is, the more computational time is saved.

Key terms
There are several terms that are used frequently when discussing 
dynamic programming, those will be presented here.

Memoization
Memoization (sounds like memorization) is the technique 
of writing a function that remembers the results of previous 
computations. This allows us to capitalize on overlapping 
subproblems.

To use memoization, a function can use a data structure (like an 
array or HashMap) to store the values it has previously computed 
and then look them up when it gets called. With the Fibonacci 
example, there could be an array where index i == -1, if we 
haven’t computed the value or i == fibi, if we have computed 
the value. Therefore, if we call fib(3) and array[3] != -1, we 
can return array[3] rather than recomputing the value.

Top-down and bottom-up
Top-down and bottom-up refer to two general approaches to 
dynamic programming. A top-down solution starts with the 
final result and recursively breaks it down into subproblems. 
The bottom-up method does the opposite. It takes an iterative 
approach to solve the subproblems first and then works up to 
the desired solution.

This book works through problems by first finding a top-
down solution and then converting it into a bottom-up 
solution. Bottom-up solutions are not always better than top-
down solutions. The goal of the book is to demonstrate that 
both solutions are equally valid and that one solution can be 
determined from the other. In an interview situation, although 
bottom-up solutions often result in more concise code, either 
approach is appropriate. I recommend that you use whatever 
solution makes the most sense to you.

The distinction between top-down and bottom-up solutions will 
be discussed in detail in the upcoming examples. Therefore, if 
it not yet clear to you, it is not necessary to be concerned. The 
important point is that top-down = recursive and bottom-up = 
iterative.

http://www.byte-by-byte.com/dpbook-facebook
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Dynamic  
Programming 
Practice

As with many things, talk is cheap. Now that we’ve discussed 
some of the higher-level ideas, let’s dig into the specifics.

The FAST method
The most successful interviewees are those who have developed 
a repeatable strategy to succeed. This is especially true for 
dynamic programming. This is the reason for the development 
of the FAST method.

There are four steps in the FAST method:

1. First solution

2. Analyze the first solution

3. Identify the Subproblems

4. Turn the solution around

By following these four steps, it is easy to come up with an 
optimal dynamic solution for almost any problem.

Find full code for all of the problems  
in this book and other resources at  
www.byte-by-byte.com/dpbook-resources.
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First solution
This is an important step for any interview question but is 
particularly important for dynamic programming. This step 
finds the first possible solution. This solution will be brute force 
and recursive. The goal is to solve the problem without concern 
for efficiency. It means that if you need to find the biggest/
smallest/longest/shortest something, you should write code 
that goes through every possibility and then compares them all 
to find the best one.

Your solution must also meet these restrictions:

• The recursive calls must be self-contained. That means 
no global variables.

• You cannot do tail recursion. Your solution must compute 
the results to each subproblem and then combine them 
afterwards.

• Do not pass in unnecessary variables. Eg. If you can 
count the depth of your recursion as you return, don’t 
pass a count variable into your recursive function.

Once you’ve gone through a couple problems, you will likely see 
how this solution looks almost the same every time.

Analyze the first solution
In this step, we will analyze the first solution that you came up 
with. This involves determining the time and space complexity 
of your first solution and asking whether there is obvious room 
for improvement.
 
As part of the analytical process, we need to ask whether the 
first solution fits our rules for problems with dynamic solutions:

• Does it have an optimal substructure? Since our solution’s 
recursive, then there is a strong likelihood that it meets 
this criteria. If we are recursively solving subproblems of 
the same problem, then we know that our substructure 
is optimal, otherwise our algorithm wouldn’t work.

• Are there overlapping subproblems? This can be more 
difficult to determine because it doesn’t always present 
itself with small examples. It may be necessary to try 
a medium-sized test case. This will enable you to see 
if you end up calling the same function with the same 
input multiple times.

http://www.byte-by-byte.com/dpbook-facebook
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Find the Subproblems
If our solution can be made dynamic, the exact subproblems to 
memoize must be codified. This step requires us to discover the 
high-level meaning of the subproblems. This will make it easier 
to understand the solution later. Our recursive solution can be 
made dynamic by caching the values. This top-down solution 
facilitates a better understanding of the subproblems which is 
useful for the next step.

Turn the solution around
We now have a top-down solution. This is fine and it would be 
possible to stop here. However, sometimes it is better to flip 
it around and to get a bottom up solution instead. Since we 
understand our subproblems, we will do that. This involves 
writing a completely different function (without modifying 
the existing code). This will iteratively compute the results of 
successive subproblems, until our desired result is reached.

The following sample problems use the FAST method to arrive 
at the solutions. By going through the examples, it will help you 
to understand how each of these steps is applied.

 

http://www.byte-by-byte.com/dpbook-facebook
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Fibonacci 
Numbers

Given an integer n, write a function that will return the nth 
Fibonacci number.

eg. 
fib(0) = 0
fib(1) = 1
fib(5) = 5
fib(10) = 55

First solution
The first step in our FAST method is to find the first possible 
solution. With this type of problem, we can find a solution by 
focusing on the definition of a Fibonacci number. If you’re not 
sure, you can ask your interviewer. However, it is likely that you 
remember the following from grade school:

fib(n) = fib(n - 1) + fib(n - 2)
fib(0) = 0
fib(1) = 1

Using these three expressions, it’s possible to calculate any 
Fibonacci number.

When looking at these expressions, we can see that we’ve 
defined a recursive function. There are two base cases: fib(0) 
and fib(1). There is also the recursive call: fib(n) = fib(n - 
1) + fib(n - 2). It is, therefore, possible to code up our first 
solution (fig. 1).

// Compute the nth Fibonacci number
// We assume that n >= 0 and that int is 
// sufficient to hold the result
public int fib(int n) {
  if (n == 0) return 0;
  if (n == 1) return 1;
  return fib(n-1) + fib(n-2);
}

Fig 1. Naive recursive Fibonacci solution

http://www.byte-by-byte.com/dpbook-facebook
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Analyze the first solution
The first iteration of our code has a short and sweet solution. 
It could even be reduced to two lines by combining the if 
statements.

But how does our solution stack up time-wise? Let’s look at the 
execution of fib(4) (fig. 2).

Our graph shows that this solution isn’t ideal. While fib(0) and 
fib(1) are constant time operations, fib(2) is called multiple 
times, each of which involves further recursive calls.

We can quickly compute the runtime, since we know that the 
depth of the recursive call (the height of the tree) will be n. This 
is because we recursively call our function with n-1 each time. 
We also know that each recursive call results in two more calls, 
until we reach the base case. We can, therefore, say that we are 
making 1 + 2 + 4 + 8 + … + 2^n-1 function calls or 2^0 + 
2^1 + … + 2^n-1 calls, which reduces to O(2^n).

This is a terrible runtime!

Since we’re using recursion, we can determine whether this 
problem is a potential candidate for dynamic programming. By 
looking at the solution, we can see that it has:

1. Optimal substructure. Our solution is recursive. Once 
we’ve solved one of the subproblems (ie. fib(2)), we 
can use these solutions to solve for greater values of n. 

2. Overlapping subproblems. Since fib(2) gets called 
multiple times, it would be much more efficient if we 
were able to compute the solution to fib(2) only once.

Our problem has an optimal substructure and overlapping 
subproblems. Therefore, we know that we can improve our 
problem by using dynamic programming. We are now ready to 
move to the next step of our FAST method.

// Compute the nth Fibonacci number
public int fib(int n) {
  if (n == 0) return 0;
  if (n == 1) return 1;
  return fib(n-1) + fib(n-2);
}

Fig 1. Repeated

fib(1)

fib(4)

fib(2)fib(3)

fib(1)

fib(0)

fib(0)fib(1)fib(2)

Fig 2. Execution tree for fib(4)
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Find the subproblems
In each recursive call, we break our problem into two 
subproblems. We then combine those two partial results to get 
our final result. In this case, for a function call of fib(n), our two 
subproblems are fib(n-1) and fib(n-2).

fib(n-1) and fib(n-2) are the two subproblems whose results 
we need in order to solve our problem. They are also the same 
subproblems that are being called multiple times with the 
same input. Therefore, we should cache the results of these 
subproblems.

However, before caching the values, it is essential to be clear 
on the meaning of the subproblems. In this case, it is simple - 
the value of fib(n-1) is just the n-1th Fibonacci number. With 
future problems, however, understanding the meaning of the 
subproblem is more complicated, as well as more important.

Understanding the subproblems allows us to add a cache 
to our original solution and to obtain a top-down dynamic 
programming solution (figs. 3, 4).

Our runtime now scales linearly, rather than exponentially. For 
fib(n), we compute the Fibonacci value for each value from 1 
to n exactly once. This gives us a runtime of O(n). In terms of 
the space complexity, we have to use O(n) space to store the 
cache. However, since we are making a recursive call that goes 
n deep and uses O(n) stack space already, it does not affect our 
asymptotic space complexity.

// Compute the nth Fibonacci number recursively.
// Optimized by caching subproblem results
public int fib(int n) {
  if (n < 2) return n;
  // Create cache and initialize to -1
  int[] cache = new int[n+1];
  for (int i = 0; i < cache.length; i++) {
      cache[i] = -1;
  }
  // Fill initial values in cache
  cache[0] = 0;
  cache[1] = 1;
  return fib(n, cache);
}

// Overloaded private method
private int fib(int n, int[] cache) {
  // If value is set in cache, return
  if (cache[n] >= 0) return cache[n];
  // Compute and add to cache before returning
  cache[n] = fib(n-1, cache) + fib(n-2, cache);
  return cache[n];
}

Fig 3. Top-down dynamic Fibonacci solution 

fib(1)

fib(4)

fib(2)fib(3)

fib(1)

fib(0)

fib(2)

Fig 4. Execution tree for fib(4). Cache hits 
are bolded
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Turn the solution around
Since we now have a top-down solution, it is possible to reverse 
the process and solve it from the bottom up. This can be done by 
starting with the base cases and building up the solution from 
there by computing the results of each subsequent subproblem, 
until we reach our result.

In this problem, our base cases are fib(0) = 0 and fib(1) = 
1. From these two values, we can compute the next largest 
Fibonacci number, fib(2) = fib(0) + fib(1). Once we have the 
value of fib(2), we can calculate fib(3) etc. As we successively 
compute each Fibonacci number, the previous values are saved 
and referred to as necessary, eventually reaching fib(n).

Our code for this process is fairly straightforward (fig 5).

This process yields a bottom-up solution. Since we iterate 
through all of the numbers from 0 to n once, our time complexity 
will be O(n) and our space will also be O(n), since we create a 1D 
array from 0 to n. This makes our current solution comparable 
to the top-down solution, although without recursion. This code 
is likely easier to understand.

Because we understood the meaning of our subproblems and 
how to combine them into subsequently larger solutions, it was 
easy to write this code. A full understanding of the problem 
means that converting from top-down to bottom-up doesn’t 
have to be a difficult task.

// Compute the nth Fibonacci number iteratively
public int fib(int n) {
  if (n == 0) return 0;

  // Initialize cache
  int[] cache = new int[n+1];
  cache[1] = 1;
       
  // Fill cache iteratively
  for (int i = 2; i <= n; i++) {
      cache[i] = cache[i-1] + cache[i-2];
  }
 
  return cache[n];
}

Fig 5. Bottom-up dynamic Fibonacci solution

http://www.byte-by-byte.com/dpbook-facebook
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Many problems would actually be solved by this point. However, 
in this case it is possible to improve our solution further. During 
the computation process, we only refer to the most recent two 
subproblems (cache[i-1] and cache[i-2]) to compute the 
value of the current subproblem. Therefore, cache[0] through 
cache[i-3] are unnecessary and do not need to be kept in 
memory.

We can, therefore, improve the space complexity of our solution 
to O(1) by only caching the most recent two values.

While this additional optimization is not applicable to all 
problems, it is useful to look for the opportunity to use it, 
wherever possible.

Conclusion
This problem is a perfect introduction to dynamic programming. 
It lends itself to recursion and has clear subproblems that make 
it easy to cache for a dynamic solution. Although other problems 
can be more complicated, the concepts in this problem easily 
carry over.

// Compute the nth Fibonacci number iteratively 
// with constant space. We only need to save 
// the two most recently computed values
public int fib(int n) {
  if (n < 2) return n;
  int n1 = 1, n2 = 0;
  for (int i = 2; i < n; i++) {
    int n0 = n1 + n2;
    n2 = n1;
    n1 = n0;
  }
        
  return n1 + n2;
}

Fig 6. Optimized bottom-up dynamic Fibonacci 
solution
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Making 
Change

 

Given an integer representing a given amount of change, write a 
function to compute the total number of coins required to make 
that amount of change. You can assume that there is always a 
1¢ coin.

eg. (assuming American coins: 1, 5, 10, and 25 cents)
makeChange(1) = 1 (1)
makeChange(6) = 2 (5 + 1)
makeChange(49) = 7 (25 + 10 + 10 + 1 + 1 + 1 + 1)

First solution
We will start by finding the first solution to this problem. For 
any problem where you are asked to find the most/least/
largest/smallest etc, an excellent technique is to compare every 
possible combination. Although it will be inefficient, efficiency is 
not the most important current consideration and a solution of 
that nature is easy to make dynamic.

We can easily write a recursive function to find every possible 
combination of coins (fig. 7). At each recursive step, the solution 
can be broken into subproblems. If a 25¢ coin is selected, how 
many coins will be required to compose the remaining quantity?

// Brute force solution. Go through every 
// combination of coins that sum up to c to 
// find the minimum number
private int[] coins = new int[]{10, 6, 1};
public int makeChange(int c) {
  if (c == 0) return 0;
  int minCoins = Integer.MAX_VALUE;
  // Try removing each coin from the total and 
  // see how many more coins are required
  for (int coin : coins) {
    // Skip a coin if it’s value is greater                                                                       
  // than the amount remaining
    if (c - coin >= 0) {
      int currMinCoins = makeChange(c - coin);
      if (currMinCoins < minCoins) 
        minCoins = currMinCoins;
    }
  }
  // Add back the coin removed recursively
  return minCoins + 1;
}

Fig 7. Naive Making Change solution
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A common, efficient solution to this problem is to use a 
greedy algorithm. In this situation, you repeatedly select 
the largest coin that isn’t larger than the remaining 
amount of change (more info here). However, this 
doesn’t work for arbitrary combinations of coins 
(consider 1¢, 6¢, and 10¢ coins and using a greedy 
algorithm to compute makeChange(12)). Therefore, we 
will instead focus on a generalized solution.

Analyze the first solution
It is not surprising that the first iteration of our code is relatively 
inefficient. Since we are looking at every possible combination 
of coins to find the best one, we have to look at many different 
combinations.

As we can see from the execution of makeChange(12) (fig. 8), 
our tree will have a maximum height of c and branch n different 
ways at each level, where n is the number of different coins. 
This means that our big O time complexity will be O(c^n).

Since the runtime is very poor and our solution is recursive, let’s 
consider whether we can use dynamic programming.

1. Optimal substructure. As we’ve seen, recursion is a 
pretty good heuristic in this case. It is also possible to use 
the commutative and associative properties of addition 
to see that by finding the minimum number of coins for 
subproblem, it can be combined into the larger problem.

2. Overlapping subproblems. This property is often easiest 
to visualize by drawing a diagram and seeing if there is 
overlap between the multiple branches of the tree. While 
not shown in this diagram, we know that makeChange(11) 
will be broken into makeChange(1), makeChange(5), and 
makeChange(10). makeChange(1) and makeChange(5) 
are called in other branches, so we know there’s overlap.

With those properties, we can continue using the FAST method 
to find a dynamic programming solution for this problem.

// Brute force solution. Go through every 
// combination of coins that sum up to c to  
// find the minimum number
private int[] coins = new int[]{10, 6, 1};
public int makeChange(int c) {
  if (c == 0) return 0;
  int minCoins = Integer.MAX_VALUE;
  // Try removing each coin from the total and 
  // see how many more coins are required
  for (int coin : coins) {
    // Skip a coin if it’s value is greater  
   // than the amount remaining
    if (c - coin >= 0) {
      int currMinCoins = makeChange(c - coin);
      if (currMinCoins < minCoins) 
        minCoins = currMinCoins;
    }
  }
  // Add back the coin removed recursively
  return minCoins + 1;
}

Fig 7. Repeated
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change(12)

change(6)change(2)

change(1) change(0) change(5)

...

... ... ...

change(0)

change(11)

-10

-1

-1

-1
-1-6

-6-10

-1
-6

Fig 8. Tree of recursive calls for makeChange(12) with 
coins={10, 6, 1}

Find the subproblems
Each function calls itself recursively once for each coin. These 
recursive calls are the subproblems because they break down 
our original input into smaller components and calculate those 
respective values.

The meaning of these subproblems is relatively easy to 
understand because it is identical to the meaning of the original 
problem. makeChange(c) for any value of c simply returns the 
minimum number of coins required to make c cents. Therefore, 
in our solution, we know that makeChange(c - coin) is simply 
the minimum number of coins to make c-coin cents.

Based on this understanding, we can turn our solution into a 
top-down dynamic solution. We can cache the results as they 
are computed. That means that we will cache the minimum 
number of coins needed to make various smaller amounts of 
change.

Like the Fibonacci problem, our code doesn’t actually have to 
change very much. It’s only necessary to overload our function 
with another that can initialize the cache. Then we update the 
original function in order to check the cache before doing the 
computation and saving the result to the cache afterwards  
(fig. 9).

The execution tree on the next page shows that the changes 
significantly improve the solution (fig. 10). We are only using 
O(c) space, even with the recursive stack. 

The time complexity is a bit more complicated, but it can be 
estimated. There will be at most c calls that don’t hit the cache. 
The number that do hit the cache is proportional to the number 
of coins (the branching factor). Therefore, we can estimate our 
complexity at O(c * n).
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// Top down dynamic solution. Cache the values 
// as we compute them
private int[] coins = new int[]{10, 6, 1};

public int makeChange(int c) {
  // Initialize cache with values as -1
  int[] cache = new int[c + 1];
  for (int i = 1; i < c + 1; i++) 
  cache[i] = -1;
  return makeChange(c, cache);
}

// Overloaded recursive function
private int makeChange(int c, int[] cache) {
  // Return the value if it’s in the cache
  if (cache[c] >= 0) return cache[c];
        
  int minCoins = Integer.MAX_VALUE;
        
  // Find the best coin
  for (int coin : coins) {
    if (c - coin >= 0) {
      int currMinCoins = 
        makeChange(c - coin, cache);
        if (currMinCoins < minCoins) 
          minCoins = currMinCoins;
    }
  }
        
  // Save the value into the cache
  cache[c] = minCoins + 1;
  return cache[c];
}

Fig 9. Top-down dynamic Making Change solution
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Fig 10. Tree of recursive calls for makeChange(12) with 
coins={10, 6, 1}. Cache hits are bolded
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Turn the solution around
Once the top-down solution is completed, it’s possible to flip it 
around. We do this by solving the same subproblems in reverse 
order. Rather than starting with our result in mind, we start with 
no change and work our way up until we reach the solution.

The next step is to determine the subproblems that must be 
solved, in order to solve successive subproblems. If we want 
to compute makeChange(c), then we will have n different 
subproblems. If our coins are {10, 6, 1}, we need to have the 
solutions for makeChange(c - 10), makeChange(c - 6), and 
makeChange(c - 1).

Once makeChange() is solved for 0 through c - 1, it will be 
easy to compute the value of makeChange(c). This is done by 
using the first value, 0 as our base case. We can then compute 
the remaining values from the previously computed values.

By looking at the code on the next page we can see that we are 
using O(c) space and O(c * n) time. This is comparable to the 
top-down solution.

Although it is otherwise comparable, this code is much simpler 
than the top-down solution. It's much easier to read and test. 
However, the understanding developed from working through 
this problem makes it easier to understand what this code is 
really doing.

// Bottom up dynamic programming solution. 
// Iteratively compute number of coins for 
// larger and larger amounts of change
public int makeChange(int c) {
  int[] cache = new int[c + 1];
  for (int i = 1; i <= c; i++) {
    int minCoins = Integer.MAX_VALUE;
            
    // Try removing each coin from the total  
  // and see which requires the fewest 
  // extra coins
    for (int coin : coins) {
      if (i - coin >= 0) {
        int currCoins = cache[i-coin] + 1;
        if (currCoins < minCoins) {
          minCoins = currCoins;
        }
      }
    }
    cache[i] = minCoins;
  }
        
  return cache[c];
}

Fig 11. Bottom-up dynamic Making Change 
solution
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Conclusion
Although Making Change is slightly more complicated than 
where we started with the Fibonacci problem, it is still an excellent 
example of how to use dynamic programming.

Both of these problems have had very straightforward 
subproblems. Their meaning is very clear and doesn’t require 
much thought. However, in the remaining three problems, defining 
the subproblems correctly will become much more important.
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Square  
Submatrix

Given a 2D boolean array, find the largest square subarray of 
true values. The return value should be the side length of the 
largest square subarray subarray.

eg.
arr =

squareSubmatrix(arr) = 2

First solution
This may be the hardest problem in this ebook to get started 
with initially. It is easy to find a brute force solution that checks 
every possible square subarray to see if it contains all true 
values. However, that solution isn’t easily broken down into 
subproblems. Therefore, in order to do this dynamically, we 
need to explore this further.

Really, what we want to do is to iterate through our array in order 
to find the biggest square subarray that contains each cell. 
Since we do not want to keep looking at the same subarray, we 
want to ask this question: What is the biggest square subarray 
for which the current cell is the upper left-hand corner?

While it may seem to be okay to do this iteratively, reframing the 
problem in this way allows us to think of it recursively in terms 
of subproblems. 

Consider the figure on the next page (fig. 12). If our current cell 
is arr[0][0], we find that the cells arr[0][1], arr[1][0], 
and arr[1][1] are each the upper left-hand corner of their own 
respective 3x3 subarrays. With that knowledge, we can see our 
current cell, arr[0][0], is the only cell missing in a subarray of 
the next size larger.

We can generalize based on this realization. If a given cell is 
true, then it is the upper lefthand corner of the minimum size 
of the three subarrays to the bottom, right, and bottom-right. It 
is, therefore, possible to implement this recursively. This can be 
done by iterating through each cell and recursively finding the 
size of the largest square subarrays to the bottom, right, and 
bottom-right, and combine it to get our solution (fig. 13).
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Fig 12. Considering arr[0][0] is true, what is the largest 
submatrix we can make with the child submatrix?

// Brute force solution. From each cell 
// find the biggest square submatrix for which 
// it is the upper left-hand corner
public int squareSubmatrix(boolean[][] arr) {
  int max = 0;
  // Compute for each cell the biggest subarray 
  for (int i = 0; i < arr.length; i++) {
    for (int j = 0; j < arr[0].length; j++) {
      if (arr[i][j]) max = 
        Math.max(max,squareSubmatrix(arr,i,j));
    }
  }
  return max;
}

// Overloaded recursive function
private int squareSubmatrix(boolean[][] arr, 
                            int i, int j) {
  // Base case at bottom or right of the matrix
  if (i == arr.length || j == arr[0].length) 
    return 0;    
  // If the cell is false then it’s not part    
  // of a valid submatrix
  if (!arr[i][j]) return 0;
  // Find the size of the right, bottom, and 
  // bottom right submatrices and add 1 to the 
  // minimum of those 3 to get the result
  return 1 + Math.min(Math.min(
                 squareSubmatrix(arr, i+1, j),   
                 squareSubmatrix(arr, i, j+1)),
               squareSubmatrix(arr, i+1, j+1));
}

Fig 13. Naive Square Submatrix solution
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This solution may seem to be complicated or that 
you need to just see it. Although this is generally true, 
the technique of using geometric properties occurs 
frequently. It is possible to use it, if needed.

Analyze the first solution
By now, you’re probably getting used to the routine of how the 
FAST method can be used. The current time solution is very 
poor and it is helpful to understand how bad it is.

In order to evaluate the runtime of this code, we can examine 
our recursion at a high level. With each turn, we make three 
recursive calls. Therefore, we branch by 3 each time and get a 
runtime of 3 * 3 * 3 * … or 3^x. In this case, x is the depth of 
our recursion. Since in each turn, we either go down or left in our 
matrix, we can find that the maximum depth of our recursion is 
n + m for an n by m matrix. In this solution, we also have to do 
our recursive call for each of the n * m cells. We, therefore, get 
a runtime of O(n * m * 3 ^ (n + m)).

In terms of space complexity, our solution is simple because 
the only space we use is the recursive stack. Therefore, we get 
a space complexity of O(n + m).

Since that solution was so bad, let’s see if it can be improved 
with dynamic programming.

1. Optimal substructure. Although our original solution 
of just looking at every possibility didn’t match this 
criteria, our new recursive solution does. By finding the 
maximum size of three smaller subarrays, we can find 
the maximum size of the larger subarray.

2. Overlapping subproblems. Without the recursive tree, it 
is more difficult to see this. However, if we think about 
how we execute our code, it is clear that we definitely 
have overlapping subproblems. Since we have to iterate 
over our array and continuously repeat our recursion, we 
are guaranteed to recompute subproblems that we have 
already computed.

We now know that we can definitely benefit from dynamic 
programming.
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Find the subproblems
Although we have already discussed this, we need to explicitly 
define our subproblems. Based on our definition of our recursion, 
we know that for any values of i and j, the function returns the 
largest square subarray of all true values with arr[i][j] as 
the upper left-hand corner. This is arbitrarily true for any values 
of i and j.

A closer look at the recursive function indicates that the function 
is being called recursively with different values of i and j and 
the same value of arr. Therefore, we know that our result is 
dependent on the values of i and j, but not arr, since arr stays 
the same for the duration of any given execution.

With this knowledge of the subproblems, we can cache our 
results and to look them up by i and j. To do this, it makes 
sense for us to use a 2D array as our cache. We can again easily 
modify our old solution by simply checking the cache before 
performing a computation and putting any computed values 
into the cache at the end (fig. 14).

Adding a cache allows us to significantly improve our time 
complexity. Now we only need to recursively compute each 
value once. Therefore, we visit each cell a constant number of 
times. We now get a time complexity of O(n * m) and a space 
complexity of O(n * m), because we have to store the cache.
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// Top down dynamic programming solution. Cache 
// the values to avoid repeating computations
public int squareSubmatrix(boolean[][] arr) {
  // Initialize cache. Don't need to initialize 
 // to -1 because the only cells that will be
 // 0 are ones that are false and we want to
 // skip those ones anyway
  int[][] cache = 
    new int[arr.length][arr[0].length];
  int max = 0;
  for (int i = 0; i < arr.length; i++) {
    for (int j = 0; j < arr[0].length; j++) {
      if (arr[i][j]) max = Math.max(max,      
          squareSubmatrix(arr, i, j, cache));
    }
  }        
  return max;
}    
// Overloaded recursive function
private int squareSubmatrix(boolean[][] arr, 
                int i, int j, int[][] cache) {
  if (i == arr.length || j == arr[0].length) 
    return 0;
  if (!arr[i][j]) return 0;
        
  // If the value is set in the cache return
  // it. Otherwise compute and save to cache
  if (cache[i][j] > 0) return cache[i][j];
  cache[i][j] = 1 + Math.min(Math.min(
      squareSubmatrix(arr, i+1, j, cache), 
      squareSubmatrix(arr, i, j+1, cache)),
    squareSubmatrix(arr, i+1, j+1, cache));
  return cache[i][j];
}
Fig 14. Top-down dynamic Square Submatrix 
solution

Turn the solution around
Since the top-down solution is now complete, we can flip the 
solution on it’s head. Remember that our subproblems were the 
largest square submatrix with the upper left-hand corner at a 
given location (i, j). This can be solved easily by starting with 
the smallest subproblems.

However, it is first necessary to slightly modify our subproblems. 
This is likely to happen whenever we recurse through an array/
matrix. Since recursion recurses to the end before working 
its way up, it traverses the array backwards. It starts solving 
subproblems with the bottom right-hand corner of the array.

Although it is fine for recursion, it makes iteration confusing. 
Therefore, we can reverse the subproblem so that rather than 
being the upper left-hand corner of a subarray, each subproblem 
taking (i, j) represents the bottom right-hand corner of the 
largest subarray.

This makes it easy to build up our solution (fig. 15). We can start 
with i=0, j=0 and simply solve each successive subproblem, 
until we get to i=n, j=m. We then have a cache that is full of the 
max sizes of different bottom left-hand corners. This allows us 
to iterate over and pick the largest. It is also possible to keep 
track of the maximum as we go, to avoid having to iterate over 
the whole thing again.

All we have to do now is iterate over the entire matrix once and do 
a constant-time operation for each cell. This gives us a runtime 
complexity of O(n * m). We also get a space complexity of O(n 
* m), because we have to store the results in an nxm matrix.

http://www.byte-by-byte.com/dpbook-facebook
http://www.byte-by-byte.com/dpbook-linkedin
http://www.byte-by-byte.com/dpbook-twitter


Square Submatrix Page 28

// Bottom up solution. Start from the 
// upper left corner and compute each larger
// submatrix
public int squareSubmatrix(boolean[][] arr) {
  int max = 0;
  // Initialize cache
  int[][] cache = 
    new int[arr.length][arr[0].length];
  // Iterate over matrix to compute each value
  for (int i = 0; i < cache.length; i++) {
    for (int j = 0; j < cache[0].length; j++) {
     // If we’re in the first row/column then
     // the value is just 1 if that cell is 
      // true and 0 otherwise. In other rows and  
      // columns need to look up and to the left
      if (i == 0 || j == 0) {
        cache[i][j] = arr[i][j] ? 1 : 0;
      } else if (arr[i][j]) {
        cache[i][j] =  
          Math.min(Math.min(cache[i][j-1],
                            cache[i-1][j]),
                   cache[i-1][j-1]) + 1;
      }
      if (cache[i][j] > max) max = cache[i][j];
    }
  }
  return max;
}

Fig 15. Bottom-up dynamic Square Submatrix 
solution

Conclusion
This problem is difficult because it can be challenging to 
break it into subproblems. However, with some creativity, it is 
straightforward after you codify it into a recursive function. 
This is also the first problem where the output is dependent on 
multiple inputs (i and j). We will see that come up again in the 
next two problems.
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0-1 Knapsack

Imagine that you have a knapsack which can carry a certain 
maximum amount of weight and you have a set of items with 
their own weight and a monetary value. You are going to to sell 
your items in the market but you can only carry what fits in the 
knapsack. How do you maximize the amount of money that you 
can earn? 

Or more formally…

Given a list of items with values and weights, as well as a max 
weight, find the maximum value you can generate from items, 
where the sum of the weights is less than or equal to the max.
eg.
items = {(w:2, v:6), (w:2, v:10), (w:3, v:12)}
max weight = 5
knapsack(items, max weight) = 22

First solution
The first step is to try to find a brute force solution to this 
problem. One way of solving this type of problem where you’re 
trying to find the most of something, is to find every possible 
combination of items to find the one with the maximum value 
and is under the max weight.

This can be done with a straightforward recursive function. We 
will be slightly clever and instead of looking at every possible 
combination, we limit our focus to combinations that are less 
than the maximum weight.

This can be done by recursively iterating over all the items. If 
the item isn’t too heavy to fill the remaining space in the bag, 
we recursively compute the max value of both, including and 
not including the current item. If it is too heavy, our only option 
is to not include it and to continue on to the next item (fig. 16).
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public class Item {
    int weight;
    int value;
}
// Naive brute force solution. Recursively 
// include or exclude each item to try every 
// possible combination
public int knapsack(Item[] items, int W) {
    return knapsack(items, W, 0);
}
// Overloaded recursive function
private int knapsack(Item[] items, int W, int 
i)
  {
  // If we've gone through all the items,
  // return
  if (i == items.length) return 0;
  // If the item is too big to fill the 
  // remaining space, skip it
  if (W - items[i].weight < 0) 
    return knapsack(items, W, i+1);
        
  // Find the maximum of including and not 
  // including the current item
  return Math.max(
    knapsack(items, W - items[i].weight, i+1) 
               + items[i].value,
    knapsack(items, W, i+1));
}

Fig 16. Naive 0-1 Knapsack solution
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exclude

Fig 17. Tree of recursive calls for knapsack(W, i) where W = 
5, i = 0 and items={(w:2, v:6), (w:2, v:10), (w:3, 
v:12)}

Analyze the first solution
Our code looks at every possible combination, which is not very 
efficient. The question that must be asked is: how bad is it?

Each item can be included it or not included. This causes the 
recursion to branch in two different ways. Like several other 
problems that have been discussed, we get 2 * 2 * … * 
2 or 2^n, where n is the depth of our recursion. In this case, 
our recursion iterates over the items array. Therefore, n is the 
number of items, which gives us a time complexity of O(2^n).

The code performs reasonably well in terms of space complexity. 
The only extra space that we are using is the recursive stack, 
which is at most, height O(n).
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Since there is recursion, this problem is a likely candidate to be 
improved by dynamic programming.

1. Optimal substructure. From our recursive solution, we 
know that this problem can be solved by combining the 
results of subproblems.

2. Overlapping subproblems. The diagram (fig. 17) shows 
that there is at least one overlapping subproblem. With 
these types of examples, it is sometimes not obvious 
how many subproblems actually overlap. However,  if 
even one subproblem overlaps, we know that there will be 
more with bigger inputs and deeper levels of recursion.

Since there is an optimal substructure and overlapping 
subproblems, our solution will be made dynamic.

Find the subproblems
This is a problem where the subproblems are not so 
straightforward. We need to look at the recursion in order to 
understand the real meaning of the recursive calls.

Our function includes a list of items, a weight and an index. We 
are always passing the same list of items and not modifying it 
in any way. Therefore, we know that for a given execution of this 
code, the solutions to our subproblems are dependent solely 
on the weight and index. Therefore, this discussion focuses on 
those two variables.

With each recursive call, we either subtract our current item’s 
weight from the total weight or ignore it. Therefore, the weight 
that we’re passing into our subproblem is the remaining 
available weight for additional items. The index increases with 
each call. Therefore, we know that any recursive call will only 
include the items from that index to the end of the list.

Therefore, our recursive call is asking this question: What is 
the maximum value of the items from i to items.length that 
weigh less than the given weight? It means that the initial call 
of knapsack(items, W, 0) is exactly the same, but includes 
all of the items.

Our understanding of the subproblems enables us to make our 
original solution dynamic (fig. 18). This is done by caching the 
values as we have done before. However, since it is possible 
that there will be considerable empty space in our cache, we 
can implement it using a HashMap of HashMaps (works the 
same as a 2D array, which is an array of arrays).

Looking at the code on a high level, the space complexity is O(n 
* W), where n is the number of items. This is because our worst 
case is that we will need to store the subproblem for every 
weight < W and every item index. In terms of time complexity, 
we only have to compute our value once for any combination of 
i and W. This gives us a similar time complexity of O(n * W).
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// Top down dynamic programming solution. 
// Cache values in a HashMap - the cache may
// be sparse
public int knapsack(Item[] items, int W) {
  // Map: i -> W -> value
  Map<Integer, Map<Integer, Integer>> cache = 
    new HashMap<Integer, 
                Map<Integer, Integer>>();
  return knapsack(items, W, 0, cache);
}    

// Overloaded recursive function
private int knapsack(Item[] items, int W, int 
i, Map<Integer, Map<Integer, Integer>> cache) 
{
  if (i == items.length) return 0;    
  // Check if the value is in the cache
  if (!cache.containsKey(i)) 
  cache.put(i,new HashMap<Integer,Integer>());
  Integer cached = cache.get(i).get(W);
  if (cached != null) return cached;    
  // Compute the item and add it to the cache
  int toReturn;
  if (W - items[i].weight < 0) {
    toReturn = knapsack(items, W, i+1, cache);
  } else {
    toReturn = 
      Math.max(knapsack(items, 
                        W - items[i].weight, 
                        i+1, cache) 
                 + items[i].value,
               knapsack(items, W, i+1, cache));
  }
  cache.get(i).put(W, toReturn);
  return toReturn;
}
Fig 18. Top-down dynamic 0-1 Knapsack solution
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Fig 19. Tree of recursive calls for knapsack(W, i) where W = 
5, i = 0 and items={(w:2, v:6), (w:2, v:10), (w:3, 
v:12)}. Cache hits are bolded

Turn around the solution
Since we took the time to fully understand the meaning of the 
subproblems, it’s straightforward to flip our solution. 

Similar to the Square Submatrix problem, our recursive solution 
iterates from the end of the array to the front. Therefore, we can 
start by flipping our subproblem to make it easier to deal with. 
We simply say that rather than knapsack(items, W, i) being 
the max value of the items including and after i, it will be the 
max value of the items up to, but not including i (or the first i 
items).
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It is now easy to reason through how to solve our problem 
iteratively (fig. 20). For any pair where i or W is 0, we get a max 
value of 0, because if i == 0 there are no items included. If W 
== 0, then no items may be included, because they will overflow 
the capacity. 

When i and W do not equal 0, we can determine our solution 
by looking at the previously computed subproblems. i tells 
us which item to consider and W tells us the remaining weight 
that we have available to us. For each cell, we need to decide 
whether we get a greater value at that weight by including or 
excluding item i - 1. 

We can get the value of not including the item by looking at the 
solution for W = W and i = i - 1, since the value is the same 
as it was before. We can get the value of including the item by 
looking at the max value we could get for W = W - item.
weight. This tells us the maximum value for the first i items, 
while still leaving sufficient empty space to include the current 
item.

This solution will be O(n * W) for both space and time 
complexity, which is identical in space and time complexity to 
our previous solution. We create an nxW array and iterate over 
the entire array.

// Iterative bottom up solution.
public int knapsack(Item[] items, int W) {
  // Initialize cache
  int[][] cache = 
    new int[items.length + 1][W + 1];
  // For each item and weight, compute the max 
  // value of the items up to that item that 
  // doesn't go over W weight
  for (int i = 1; i <= items.length; i++) {
    for (int j = 0; j <= W; j++) {
      if (items[i-1].weight > j) {
        cache[i][j] = cache[i-1][j];
      } else {
        cache[i][j] = Math.max(cache[i-1][j],       
            cache[i-1][j-items[i-1].weight] + 
          items[i-1].value);
      }
    }
  }
        
  return cache[items.length][W];
}

Fig 20. Bottom-up dynamic 0-1 Knapsack solution
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This problem can also be optimized in terms of space in the 
same way as with the Fibonacci problem. A close examination 
of our solution indicates that cache values are only looked up 
where i = i - 1. Therefore, we can reduce our solution to only 
using a 1D array (fig. 21).

This optimization does have limitations. With the original 
bottom-up solution, we were able to go through the array and 
figure out which items are included in the optimal knapsack. 
When we compress it into a single array, we are no longer able to 
do that. However, if you’re just trying to solve for the maximum 
value, it isn’t necessary to know the specific items.

Conclusion
The 0-1 Knapsack problem is the quintessential example of a 
dynamic programming problem. A good understanding of how 
this problem works and how to formulate the subproblems 
makes the rest of dynamic programming relatively easy to 
understand.

Many dynamic programming problems are only variations of  
the 0-1 Knapsack problem. As you go through the next problem, 
pay attention to the similarities and if you can reframe the 
problem in terms of the 0-1 Knapsack problem.

// Optimized bottom up solution with 1D cache. 
// Same as before but only save the cache of 
// i-1 and not all values of i.
public int knapsack(Item[] items, int W) {
  int[] cache = new int[W + 1];
  for (Item i : items) {
    int[] newCache = new int[W + 1];
    for (int j = 0; j <= W; j++) {
      if (i.weight > j) newCache[j] = cache[j];
      else newCache[j] = Math.max(cache[j], 
                           cache[j - i.weight] + 
                           i.value);
    }
    cache = newCache;
  }
        
  return cache[W];
}

Fig 21. Optimized bottom-up dynamic 0-1 
Knapsack solution
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Target Sum

Given an array of integers, nums and a target value T, find the 
number of ways that you can add and subtract the values in 
nums to add up to T.

eg.
nums = {1, 1, 1, 1, 1}
T = 3

1 + 1 + 1 + 1 - 1
1 + 1 + 1 - 1 + 1
1 + 1 - 1 + 1 + 1
1 - 1 + 1 + 1 + 1
-1 + 1 + 1 + 1 + 1

targetSum(nums, T) = 5

First solution
To start our solution to this problem, we can consider all of the 
possible combinations of adding and subtracting items and 
then count the number of those combinations that add up to 
our target. 

This can be done recursively by iterating through the array and 
recursively adding and subtracting each value from the total. 
Once we reach the end of the array, we check if the total is equal 
to the target sum. If it is equal to the target sum, then we have 
found one valid combination of adding and subtracting (fig. 22).

// Naive brute force solution. Find every 
// combo
public int targetSum(int[] nums, int T) {
  return targetSum(nums, T, 0, 0);
}
    
// Overloaded recursive function
private int targetSum(int[] nums, int T, int 
i, 
                      int sum) {
  // When we've gone through every item, see 
  // if we've reached our target sum
  if (i == nums.length) {
    return sum == T ? 1 : 0;
  }
        
  // Combine the possibilites by adding and 
  // subtracting the current value
  return targetSum(nums, T, i+1, sum + nums[i])
 + targetSum(nums, T, i+1, sum - nums[i]);
}
Fig 22. Naive Target Sum solution
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Analyze the first solution
Similar to what we saw in several of the previous problems, 
our brute force solution is not very efficient. The recursive tree 
branches by 2 each time, which yields a runtime of 2 * 2 * … 
* 2 or O(2^n), where n is the number of numbers. Our space 
complexity is the depth of the recursion. In this case, it is the 
length of our input, or O(n).

Based on all the problems we’ve seen so far, this looks like a 
good candidate for dynamic programming. However, before 
making a decision, we need to look at the properties.

1. Optimal substructure. This problem, like the others, is 
solved recursively. This means that we’re breaking it It is 
broken down into discrete subproblems with the results 
combined to obtain the solution.

2. Overlapping subproblems. The example tree (fig. 23) 
shows that there are multiple overlapping problems, 
even for this relatively simple example.

Hopefully at this point you’re seeing the similarities 
between this and the 0-1 Knapsack problem are 
apparent. Adding or subtracting a number is similar 
to including or excluding an item in the knapsack. In 
this case, the total number of combinations is tracked 
instead of the items in the knapsack. It would require a 
minimal effort to modify the 0-1 Knapsack code to track, 
for example, the number of different combinations that 
are less than a certain weight.

// Naive brute force solution. Find every 
// combo
public int targetSum(int[] nums, int T) {
  return targetSum(nums, T, 0, 0);
}
    
// Overloaded recursive function
private int targetSum(int[] nums, int T, int 
i, 
                      int sum) {
  // When we’ve gone through every item, see 
  // if we’ve reached our target sum
  if (i == nums.length) {
    return sum == T ? 1 : 0;
  }
        
  // Combine the possibilites by adding and 
  // subtracting the current value
  return targetSum(nums, T, i+1, sum + nums[i])
 + targetSum(nums, T, i+1, sum - nums[i]);
}

Fig 22. Repeated
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targetSum(0,0)

targetSum(1,2)targetSum(1,-1)

targetSum(3,1)targetSum(3,-1) targetSum(3,-1)targetSum(3,-3)

targetSum(2,2)targetSum(2,0) targetSum(2,0)targetSum(2,-2)

targetSum(3,3)targetSum(3,1) targetSum(3,1)targetSum(3,-1)

+1-1

-1

-1 -1 -1 -1+1 +1 +1 +1

-1+1 +1

Fig 23. Tree of recursive calls for targetSum(i, sum) where 
nums = {1, 1, 1}

Find the subproblems
In this problem, the subproblems are a little bit more complex. 
Values are passed into the recursion that don’t actually change 
during the the problem execution. We can ignore nums and T, 
since those values don’t actually change. We focus on only i 
and sum.

We’re recursively calling targetSum(nums, T, i+1, sum + 
nums[i]) and targetSum(nums, T, i+1, sum - nums[i]). 
This provides the basis for determining what the subproblems 
are. We know because we increment i every call that we are 
only looking at the values >= i, and sum is a running sum of 
numbers that we’ve added and subtracted from index 0 to i.

We can, therefore, define our subproblem as follows: 
targetSum(nums, T, i, sum) is the number of possible 
combinations of adding and subtracting the numbers at or after 
index i, where the sum of those numbers plus the sum equals 
T. It can also be stated as follows: The number of combinations 
where the sum equals T - sum.

Once the subproblem has been codified, the next step is to 
modify  the original solution to cache these values (fig. 24). 
Similar to a 0-1 Knapsack, a HashMap of HashMaps will be 
used to ensure space efficiency.

In order to get the space complexity, we need to determine the 
range of the sum. This is because we are caching solutions for 
subproblems based on i and sum. An examination of our code 
shows that the sum ranges from -sum(nums) (if every value is 
subtracted) to +sum(nums) (if every value is added). This yields 
a space complexity of O(i * sum(nums)). The time complexity 
is exactly the same, since we only have to compute each value 
once.

http://www.byte-by-byte.com/dpbook-facebook
http://www.byte-by-byte.com/dpbook-linkedin
http://www.byte-by-byte.com/dpbook-twitter


Target Sum Page 38

// Top down dynamic programming solution. Like 
// 0-1 Knapsack, we use a HashMap to save
// space
public int targetSum(int[] nums, int T) {
  // Map: i -> sum -> value
  Map<Integer, Map<Integer, Integer>> cache =
          new  HashMap<Integer,Map<Integer,Integer>>();
  return targetSum(nums, T, 0, 0, cache);
}
    
// Overloaded recursive function
private int targetSum(
  int[] nums, int T, int i, int sum,
  Map<Integer, Map<Integer, Integer>> cache) 
{
  if (i == nums.length) {
    return sum == T ? 1 : 0;
  }
        
  // Check the cache and return if we get a 
  // hit
  if (!cache.containsKey(i)) cache.put(i, 
      new HashMap<Integer, Integer>());
  Integer cached = cache.get(i).get(sum);
  if (cached != null) return cached;
        
  // If we didn't hit in the cache, compute
  // the value and store to cache
  int toReturn = 
    targetSum(nums,T,i+1,sum+nums[i],cache) + 
    targetSum(nums,T,i+1,sum-nums[i],cache);
  cache.get(i).put(sum, toReturn);
  return toReturn;
}

Fig 24. Top-down dynamic Target Sum solution

targetSum(0,0)

targetSum(1,2)targetSum(1,-1)

targetSum(3,1)targetSum(3,-1)targetSum(3,-3)

targetSum(2,2)targetSum(2,0) targetSum(2,0)targetSum(2,-2)

targetSum(3,3)targetSum(3,1)targetSum(3,-1)

+1-1

-1

-1 -1 -1+1 +1 +1

-1+1 +1

Fig 25. Tree of recursive calls for targetSum(i, sum) where 
nums = {1, 1, 1}. Cache hits are bolded

Turn around the solution
The subproblems will again be reversed so that we can iterate 
through the array in forwards order. Our subproblems, therefore, 
become: targetSum(nums, T, i, sum) is the number of 
possible combinations of adding and subtracting the numbers 
before index i (or the first i numbers).

Now we can build up the subproblems. We need to be careful 
with how the subproblem solutions are stored. This is because 
some of the values can be negative and our cache array can’t 
have negative indices. Therefore, the sum dimension of the 
cache will be size 2 * sum(nums) + 1. The values will offset 
the values by sum. The 0 index actually represents -sum(nums).

We can avoid the need for excessive bounds checking with a 
slight change in our approach. Instead of looking at the prior 
solutions to the subproblems, we will look at the subproblems 
that have already been solved and add those values to the next 
iteration.
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Assume that there is a solution for the subproblem where i = 
3 and sum = 10. If the value at the next index is 4, we know that 
we need to add our current value to the values at i = 4, sum = 
10 +/- 4, or i = 4 and sum = 14 and i = 4 and sum = 6. 
If this is done for all the values where i = 3, then we will have 
solved for the entire column where i = 4.

Our solution (fig. 26) gives us the same time and space 
complexity as the top-down solution. We are filling in a cache 
of size i * sum(nums) and each step takes constant time. 
Therefore, our time and space complexity are both O(i * 
sum(n)).

public int targetSum(int[] nums, int T) {
  int sum = 0;
  // Our cache has to range from -sum(nums) to 
  // sum(nums), so we offset everything by sum
  for (int num : nums) sum += num;
  int[][] cache = 
    new int[nums.length + 1][2*sum + 1];    
  if (sum == 0) return 0;
  // Initialize i=0, T=0
  cache[0][sum] = 1;
  // Iterate over previous row and update the
  // current row
  for (int i = 1; i <= nums.length; i++) {
    for (int j = 0; j < 2 * sum + 1; j++) {
      int prev = cache[i-1][j]; 
      if (prev != 0) {
        cache[i][j - nums[i-1]] += prev;
        cache[i][j + nums[i-1]] += prev;
      }
    }
  }
  return cache[nums.length][sum + T];
} 
Fig 26. Bottom-up dynamic Target Sum solution

Conclusion
I hope you now have a better understanding of how to deal 
with these types of problems. The increased complexity of 
our problem requires a solution that can be trickier and more 
susceptible to errors. If our values are not offset by sum(nums) 
in the iterative solution, we will likely get an IndexOutOfBounds 
exception.

This discussion clearly shows how this problem closely mirrors 
the 0-1 Knapsack problem. This problem was intentionally 
chosen to because it is similar enough to be easy to spot, 
but different enough so that is possible to account for the 
differences. A clear understand of how this works, makes all 
dynamic programming much easier.
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Your main take away from this book should be that dynamic 
programming and coding interviews don’t have to be hard. We 
worry about them excessively because we feel that there is so 
much pressure on us.

It’s easy to feel like your life is over if you don’t get a job at 
Google or Facebook. But that’s the same as saying that if we 
don’t get into Harvard, it’s not worth going to college. It’s clearly 
not true. However, many people hold themselves to ridiculously 
high standards that cannot possibly be achieved.

These misconceptions can hinder us when we are practicing 
for interviews. These feelings of inadequacy prevent us from 
succeeding and are something that we must deal with and 
change.

If interview prep is approached with structure and if we really 
understand what we’re doing, we don’t have to kill ourselves 
with excessive studying. We can follow a clear path forward to 
reach our ultimate goal of getting a great job. We do not need 
to be constantly worrying about whether we’ve memorized 
enough practice questions.

It is my hope that this book showed you how to take a structured 
approach which can make it easy to solve a wide array of 
dynamic programming problems.

With the FAST method in your toolkit, dynamic programming 
is one less thing you have to worry about. You can do this. You 
don’t need to spend any more time here. You should turn your 
attention elsewhere. Take this same focus to other areas of 
your study and don’t stress out. 

You’re going to do great!

Closing 
thoughts
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